Protein corona has became a prevalent subject in the field of nanomedicine owing to its diverse role in determining the efficiency, efficacy, and the ultimate biological fate of the nanomaterials used as a tool to treat and diagnose various diseases. For instance, protein corona formation on the surface of nanoparticles can modify its physicochemical properties and interfere with its intended functionalities in the biological microenvironments. As such, much emphasis should be placed in understanding these complex phenomena that occur at the bio-nano interface. The main aim of this review is to present different factors that are influencing protein-nanoparticle interaction such as physicochemical properties of nanoparticle (i.e., size and size distribution, shape, composition, surface chemistry, and coatings) and the effect of biological microenvironments. Apart from that, the effect of ignored factors at the bio-nano interface such as temperature, plasma concentration, plasma gradient effect, administration route, and cell observer were also addressed.
Nanoparticle science is rapidly changing the landscape of various scientific fields and defining new technological platforms. This is perhaps even more evident in the field of nanomedicine whereby nanoparticles have been used as a tool for the treatment and diagnosis of many diseases. However, despite the tremendous benefit conferred, common pitfalls of this technology is its potential short and long-term effects on the human body. To understand these issues, many scientific studies have been carried out. This review attempts to shed light on some of these studies and its outcomes. The topics that were examined in this review include the different possible uptake pathways of nanoparticles and intracellular trafficking routes. Additionally, the effect of physicochemical properties of nanoparticle such as size, shape, charge and surface chemistry in determining the mechanism of uptake and biological function of nanoparticles are also addressed.
Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means "growing old," is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.