Actively targeting probe 1b, an unsymmetrical bivalent dipeptide mimic, selectively bound melanoma over healthy skin tissue in histological samples from patients and Sinclair swine. Modifications to 1b gave agents 2-4 that contain a near-IR aza-BODIPY fluor. Contrary to our expectations, symmetrical probe 3 gave the highest melanoma-to-healthy skin selectivity in histochemistry and experiments with live cells; this was surprising because 2, not 3, is unsymmetrical like the original lead 1. Optical imaging of 3 in a mouse melanoma model failed to show tumor accumulation in vivo, but the probe did selectively accumulate in the tumor (some in lung and less in the liver) as proven by analysis of the organs post mortem.
Active targeting compound, a non-iodinated derivative of IK-IK-I2-azaBODIPY (1a) was previously reported to preferentially bind melanoma over healthy cells. In this study, we evaluate the photodynamic therapy (PDT) efficiency on melanoma cells of 1a, together with its reversed sequence compound KI-KI-I2-azaBODIPY (1b) and a non-targeted control I2-azaBODIPY-NH2 (2). All three test compounds possess absorption wavelengths in the near-infrared (NIR) region (λmax between 678 and 687 nm) which alleviate melanin interference and allow deeper tissue penetration. In vitro studies revealed 1a and 1b are promising photosensitizers with enhanced singlet oxygen generation, have increased uptake by B16-F10 melanoma cells via clathrin-mediated endocytosis and good photocytotoxic efficacies. Ex vivo biodistribution assays showed both 1a and 1b accumulated in the tumour. In B16-F10 tumour bearing-C57BL/6 mice, 10 mg/kg of 1b and light irradiation was found to reduce tumour volume by up to 23% at day-3. Doubling the dosage of 1b (20 mg/kg) enhanced the antitumour effect, showing 96% maximum tumour volume reduction at day-7 and tumour growth suppression for up to 12 days.