Extramammary Paget disease (EMPD) has been known to frequently express androgen receptor (AR). Therefore, androgens could play roles in the biological behavior of Paget cells. 5α-Reductase (5α-red) types 1 and 2 and 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) are pivotal in situ regulators of androgen production in androgen-responsive tissues including androgen-dependent neoplasms. Therefore, in this study, we immunolocalized AR, androgen-producing enzymes, and their transcription factors to assess the state of in situ androgen production and actions and its correlation of invasiveness in EMPD. We studied 51 cases of EMPD with known clinicopathological status. AR, 5α-red1, 17β-HSD5, and β-catenin immunoreactivity was evaluated by using the modified H-score method while cyclin D1, p53, forkhead box protein P1, and a proliferation marker, Ki-67, were quantified using labeling index. The mean scores of AR, 5α-red1, and 17β-HSD5 in invasive EMPD were all significantly higher than noninvasive EMPD (P < .0001). Ki-67 labeling index as well as the cyclin D1 score was also significantly higher in invasive than noninvasive lesions of EMPD. These results demonstrated that androgen receptor and androgen-producing enzymes were both associated with cell cycle regulation and subsequently the invasiveness of EMPD lesions and could also indicate those above as potential markers of invasive potentials in EMPD.
Sex steroids have been postulated to influence skin development and functions as well as its pathogenesis. MCC occurs in both sexes; however, the specific differences in pathogenesis among sexes have yet to be conclusively defined. The detailed status of sex steroid receptors (AR, PRA and PRB, and ERα, ERβ) are also unknown in MCC patients. We first immunolocalized sex steroid receptors and compared the results with immunolocalization of relevant transcription factors including SOX2, FOXA1, and Bcl-2 and Ki-67 in 18 cases of MCCs. AR, PRA, PRB, ERα, ERβ, Bcl-2, SOX2, and FOXA1 immunoreactivity was evaluated by using the modified H score method, and Ki-67 was quantified using labeling index. ERβ immunoreactivity was markedly present in all the cases of MCC examined, with relatively weak immunoreactivity of ERα, AR, PRA, and PRB. The status of ERβ immunoreactivity was also significantly correlated with Ki-67 labeling index and Bcl-2 score. These results demonstrated that ERβ could be associated with regulation of both cell proliferation and apoptosis in MCCs.