Displaying all 3 publications

Abstract:
Sort:
  1. Ting ASY, Gan PT
    Int Microbiol, 2024 Jan 26.
    PMID: 38277111 DOI: 10.1007/s10123-024-00486-x
    The influence of light regulation on fungal growth and enzyme production was tested on endophytic isolates of Fusarium proliferatum (CCH), Colletotrichum boninense (PL1, PL9, OL2), Colletotrichum gloeosporiodes (OL3) and Colletotrichum siamense (PL3). The isolates were treated with blue, red, green, and yellow light, while white fluorescent light (12 h light/12 h dark photoperiod) and 24 h dark conditions were applied as control. Results revealed that coloured light treatments induced formation of circadian rings, while exposure to white light and dark conditions showed less pronounced circadian rings. Growth and sporulation of endophytes were not significantly influenced by light. By contrast, enzyme production was affected by coloured light treatments, notably with red (amylase), blue (cellulase) and yellow (cellulase, xylanase, L-asparaginase) light, resulting in lower enzyme levels for certain isolates. Under control conditions, enzyme production was relatively higher for amylase, cellulase, xylanase (for cultures incubated in the dark), and for L-asparaginase (for cultures incubated in white fluorescent light). Among the endophytic isolates, F. proliferatum (CCH) showed better response to coloured light treatment as higher sporulation and enzyme production was detected, although growth was significantly suppressed. On the contrary, C. gloeosporiodes (OL3) showed better growth but significantly lower enzyme production and sporulation when treated with the various coloured light. This study revealed that coloured light may have the potential to manipulate growth, sporulation and enzyme production in certain fungal species as strategies for fungal control or for harnessing of valuable enzymes.
  2. Gan PT, Lim YY, Ting ASY
    Folia Microbiol (Praha), 2023 Oct;68(5):741-755.
    PMID: 37022636 DOI: 10.1007/s12223-023-01050-2
    The influence of light regulation on the growth and enzyme production of three endolichenic fungal isolates, i.e. Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), and Xylaria venustula (PH22), was determined. The isolates were exposed to blue, red, green, yellow, white fluorescent light (12 h light-12 h dark photoperiod) (test), and 24 h dark (control) conditions. Results revealed that the alternating light-dark conditions resulted in the formation of dark rings in most fungal isolates but was absent in PH22. Red light induced sporulation while yellow light elicited higher biomass in all isolates (0.19 ± 0.01 g, 0.07 ± 0.00 g, and 0.11 ± 0.00 g, for EF13, PH22, and EF5, respectively) as compared to incubation in the dark. Results also showed that blue light induced higher amylase activity in PH22 (15.31 ± 0.45 U/mL) and L-asparaginase activity in all isolates (0.45 ± 0.01 U/mL, 0.55 ± 0.39 U/mL, and 0.38 ± 0.01 U/mL, for EF13, PH22, and EF5, respectively) compared to both control conditions. Green light enhanced the production of xylanase (6.57 ± 0.42 U/mL, 10.64 ± 0.12 U/mL, and 7.55 ± 0.56 U/mL for EF13, PH22, and EF5, respectively) and cellulase (6.49 ± 0.48 U/mL, 9.57 ± 0.25 U/mL, and 7.28 ± 0.63 U/mL, for EF13, PH22, and EF5, respectively). In contrast, red light was the least effective light treatment as production of enzymes was the least, with lower levels of amylase, cellulase, xylanase, and L-asparaginase detected. To conclude, all three endolichenic fungi are light-responsive, with fungal growth regulated with the use of red light and yellow light, and manipulation of enzyme production via blue and green light.
  3. Gan PT, Lim YY, Ting ASY
    Arch Microbiol, 2023 Aug 11;205(9):304.
    PMID: 37566125 DOI: 10.1007/s00203-023-03649-y
    The influence of light exposure on antioxidant and antimicrobial activities of nine fungal isolates [Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), Xylaria venustula (PH22), Fusarium proliferatum (CCH), Colletotrichum boninese (PL9), Colletotrichum boninese (PL1), Colletotrichum boninese (OL2), Colletotrichum gloeosporioides (OL3) and Colletotrichum siamense (PL3)] were determined. The isolates were incubated in blue, red, green, yellow and white fluorescent light (12 h photoperiod of alternating light/dark). It was observed that green light induced higher total phenolic content (TPC) (2.96 ± 0.16 mg-30.71 ± 1.03 mg GAE/g) and ferric reducing antioxidant power (FRAP) in most isolates (4.82 ± 0.04-53.55 ± 4.33 mg GAE/g), whereas red light induced higher total flavonoid content (TFC) levels (1.14 ± 0.08-18.40 ± 1.12 mg QE/g). The crude extracts from most fungal cultures exposed to green and red lights were also notably more potent against the tested pathogens, as larger zones of inhibition (ZOI) (9.00 ± 1.00-38.30 ± 2.90 mm) and lower minimum inhibitory concentration (MIC) (0.0196-1.25 mg/mL) were achieved for antimicrobial effect. This study showed that light treatments are effective strategies in enhancing production of more potent antimicrobial compounds and valuable antioxidants from fungal isolates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links