Displaying all 7 publications

Abstract:
Sort:
  1. Ganggayah MD, Dhillon SK, Islam T, Kalhor F, Chiang TC, Kalafi EY, et al.
    Diagnostics (Basel), 2021 Aug 18;11(8).
    PMID: 34441426 DOI: 10.3390/diagnostics11081492
    Automated artificial intelligence (AI) systems enable the integration of different types of data from various sources for clinical decision-making. The aim of this study is to propose a pipeline to develop a fully automated clinician-friendly AI-enabled database platform for breast cancer survival prediction. A case study of breast cancer survival cohort from the University Malaya Medical Centre was used to develop and evaluate the pipeline. A relational database and a fully automated system were developed by integrating the database with analytical modules (machine learning, automated scoring for quality of life, and interactive visualization). The developed pipeline, iSurvive has helped in enhancing data management as well as to visualize important prognostic variables and survival rates. The embedded automated scoring module demonstrated quality of life of patients whereas the interactive visualizations could be used by clinicians to facilitate communication with patients. The pipeline proposed in this study is a one-stop center to manage data, to automate analytics using machine learning, to automate scoring and to produce explainable interactive visuals to enhance clinician-patient communication along the survivorship period to modify behaviours that relate to prognosis. The pipeline proposed can be modelled on any disease not limited to breast cancer.
  2. Ganggayah MD, Taib NA, Har YC, Lio P, Dhillon SK
    BMC Med Inform Decis Mak, 2019 03 22;19(1):48.
    PMID: 30902088 DOI: 10.1186/s12911-019-0801-4
    BACKGROUND: Breast cancer is one of the most common diseases in women worldwide. Many studies have been conducted to predict the survival indicators, however most of these analyses were predominantly performed using basic statistical methods. As an alternative, this study used machine learning techniques to build models for detecting and visualising significant prognostic indicators of breast cancer survival rate.

    METHODS: A large hospital-based breast cancer dataset retrieved from the University Malaya Medical Centre, Kuala Lumpur, Malaysia (n = 8066) with diagnosis information between 1993 and 2016 was used in this study. The dataset contained 23 predictor variables and one dependent variable, which referred to the survival status of the patients (alive or dead). In determining the significant prognostic factors of breast cancer survival rate, prediction models were built using decision tree, random forest, neural networks, extreme boost, logistic regression, and support vector machine. Next, the dataset was clustered based on the receptor status of breast cancer patients identified via immunohistochemistry to perform advanced modelling using random forest. Subsequently, the important variables were ranked via variable selection methods in random forest. Finally, decision trees were built and validation was performed using survival analysis.

    RESULTS: In terms of both model accuracy and calibration measure, all algorithms produced close outcomes, with the lowest obtained from decision tree (accuracy = 79.8%) and the highest from random forest (accuracy = 82.7%). The important variables identified in this study were cancer stage classification, tumour size, number of total axillary lymph nodes removed, number of positive lymph nodes, types of primary treatment, and methods of diagnosis.

    CONCLUSION: Interestingly the various machine learning algorithms used in this study yielded close accuracy hence these methods could be used as alternative predictive tools in the breast cancer survival studies, particularly in the Asian region. The important prognostic factors influencing survival rate of breast cancer identified in this study, which were validated by survival curves, are useful and could be translated into decision support tools in the medical domain.

  3. Kalafi EY, Nor NAM, Taib NA, Ganggayah MD, Town C, Dhillon SK
    Folia Biol. (Praha), 2019;65(5-6):212-220.
    PMID: 32362304
    Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
  4. Mei Yen MC, Islam T, Ellsworth-Beaumont C, Dhillon SK, Ganggayah MD, Taib NA
    J Educ Health Promot, 2023;12:231.
    PMID: 37727439 DOI: 10.4103/jehp.jehp_1579_22
    BACKGROUND: Breast cancer (BC) is the most common cancer in Malaysia, with many diagnosed at late stages. The "Know Your Lemons" (KYL) visual educational tools were developed by KYL Foundation. This study aimed to evaluate participants' confidence levels and perceived knowledge in identifying BC symptoms before and after exposure to KYL tools.

    MATERIALS AND METHODS: A cross-sectional study was carried out among 788 participants in three KYL health campaigns from 2017 to 2020. Perceived knowledge (a 5-item Likert scale was used, zero means "very poor" and 4 means "excellent knowledge") and confidence in identifying BC symptoms were studied. A Wilcoxon Matched-Paired Signed-Rank Test was performed to assess the perceived knowledge.

    RESULTS: There was a significant improvement in the perceived knowledge Mean (±SD) score (2.84 ± 1.02) versus (4.31 ± 0.66) before and after the campaign (P < 0.01). About 95.6% agreed that the language used in KYL materials was clear and understandable, 89.8% agreed it is acceptable in Malaysian culture, and 80% felt more confident in identifying BC symptoms. Therefore, 90.8% had the intention of breast self-examination and 90.8% would consult a doctor if symptomatic. The majority (92.7%) agreed that the KYL tools clarified the BC tests needed.

    CONCLUSION: The KYL tools enhanced perceived BC symptom recognition knowledge and confidence levels.

  5. Abu Hasan NI, Ganggayah MD, Suhaimi S, Abu Hasan N, Jamal NF
    Malays J Med Sci, 2023 Dec;30(6):91-107.
    PMID: 38239247 DOI: 10.21315/mjms2023.30.6.10
    BACKGROUND: Online distance learning (ODL) known as the flexible learning environment can trigger a negative impact on students' mental health. The study aimed to identify the influence of fear as mediator between mental health problem and university students' perception on ODL.

    METHODS: This is a cross-sectional study involving a convenient sampling of 258 undergraduate students. Self-administered structured questionnaires adapted from the Depression, Anxiety and Stress Scale-21 (DASS-21) and the Fear of COVID-19 Scale (FCV-19S), were used to assess the severity of psychological symptoms (depression, anxiety and stress) and fear. The perception towards ODL is also designed to assess the students' perception related to ODL implementation. The data were analysed using descriptive statistics and Structural Equation Modelling-Partial Least Square (SEM-PLS).

    RESULTS: Overall, 84.2%, 95.0% and 67.4% of the participants experienced moderate to very severe level of depression, anxiety and stress, respectively. In addition, 82.6% of them suffering with moderate to extreme level of fear, of which 81.8% of participants had a negative view on ODL. The results of SEM-PLS revealed that there are complementary partial mediation effects of fear on the relationship between depression and students' perception during ODL (β = 0.502, t-value = 0.828, P-value = 0.017). The anxiety (β = 0.353, t-value = 5.401, P-value = 0.000) and stress (β = 0.542, t-value = 8.433, P-value = 0.000) have directly influenced on fear.

    CONCLUSION: This study demonstrated that university students had the prevalence of psychological symptoms and fear during ODL. In line with this, fear contributes significantly to the mental health status of university students and has negatively impacted the students' perception during ODL implementation.

  6. Kalafi EY, Jodeiri A, Setarehdan SK, Lin NW, Rahmat K, Taib NA, et al.
    Diagnostics (Basel), 2021 Oct 09;11(10).
    PMID: 34679557 DOI: 10.3390/diagnostics11101859
    The reliable classification of benign and malignant lesions in breast ultrasound images can provide an effective and relatively low-cost method for the early diagnosis of breast cancer. The accuracy of the diagnosis is, however, highly dependent on the quality of the ultrasound systems and the experience of the users (radiologists). The use of deep convolutional neural network approaches has provided solutions for the efficient analysis of breast ultrasound images. In this study, we propose a new framework for the classification of breast cancer lesions with an attention module in a modified VGG16 architecture. The adopted attention mechanism enhances the feature discrimination between the background and targeted lesions in ultrasound. We also propose a new ensembled loss function, which is a combination of binary cross-entropy and the logarithm of the hyperbolic cosine loss, to improve the model discrepancy between classified lesions and their labels. This combined loss function optimizes the network more quickly. The proposed model outperformed other modified VGG16 architectures, with an accuracy of 93%, and also, the results are competitive with those of other state-of-the-art frameworks for the classification of breast cancer lesions. Our experimental results show that the choice of loss function is highly important and plays a key role in breast lesion classification tasks. Additionally, by adding an attention block, we could improve the performance of the model.
  7. Tan WM, Ng WL, Ganggayah MD, Hoe VCW, Rahmat K, Zaini HS, et al.
    Health Informatics J, 2023;29(3):14604582231203763.
    PMID: 37740904 DOI: 10.1177/14604582231203763
    Radiology reporting is narrative, and its content depends on the clinician's ability to interpret the images accurately. A tertiary hospital, such as anonymous institute, focuses on writing reports narratively as part of training for medical personnel. Nevertheless, free-text reports make it inconvenient to extract information for clinical audits and data mining. Therefore, we aim to convert unstructured breast radiology reports into structured formats using natural language processing (NLP) algorithm. This study used 327 de-identified breast radiology reports from the anonymous institute. The radiologist identified the significant data elements to be extracted. Our NLP algorithm achieved 97% and 94.9% accuracy in training and testing data, respectively. Henceforth, the structured information was used to build the predictive model for predicting the value of the BIRADS category. The model based on random forest generated the highest accuracy of 92%. Our study not only fulfilled the demands of clinicians by enhancing communication between medical personnel, but it also demonstrated the usefulness of mineable structured data in yielding significant insights.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links