Displaying all 3 publications

Abstract:
Sort:
  1. Kwan MK, Chiu CK, Chan TS, Abd Gani SM, Tan SH, Chan CYW
    Spine J, 2018 01;18(1):53-62.
    PMID: 28751241 DOI: 10.1016/j.spinee.2017.06.020
    BACKGROUND CONTEXT: Selection of upper instrumented vertebra for Lenke 5 and 6 curves remains debatable, and several authors have described different selection strategies.

    OBJECTIVE: This study analyzed the flexibility of the unfused thoracic segments above the "potential upper instrumented vertebrae (UIV)" (T1-T12) and its compensatory ability in Lenke 5 and 6 curves using supine side bending (SSB) radiographs.

    STUDY DESIGN: A retrospective study was used.

    PATIENT SAMPLE: This study comprised 100 patients.

    OUTCOME MEASURES: The ability of the unfused thoracic segments above the potential UIV, that is, T1-T12, to compensate in Lenke 5 and 6 curves was determined. We also analyzed postoperative radiological outcome of this cohort of patients with a minimum follow-up of 12 months.

    METHODS: Right and left SSB were obtained. Right side bending (RSB) and left side bending (LSB) angles were measured from T1 to T12. Compensatory ability of thoracic segments was defined as the ability to return to neutral (center sacral vertical line [CSVL]) with the assumption of maximal correction of lumbar curve with a horizontal UIV. The Lenke 5 curves were classified as follows: (1) Lenke 5-ve (mobile): main thoracic Cobb angle <15° and (2) Lenke 5+ve (stiff): main thoracic Cobb angle 15.0°-24.9°. This study was self-funded with no conflict of interest.

    RESULTS: There were 43 Lenke 5-ve, 31 Lenke 5+ve, and 26 Lenke 6 curves analyzed. For Lenke 5-ve, >70% of thoracic segments were able to compensate when UIV were at T1-T8 and T12 and >50% at T9-T11. For Lenke 5+ve, >70% at T1-T6 and T12, 61.3% at T7, 38.7% at T8, 3.2% at T9, 6.5% at T10, and 22.6% at T11 were able to compensate. For Lenke 6 curve, >70% at T1-T6, 69.2% at T7, 19.2% at T8, 7.7% at T9, 0% at T10, 3.8% at T11, and 34.6% at T12 were able to compensate. There was a significant difference between Lenke 5-ve versus Lenke 5+ve and Lenke 5-ve versus Lenke 6 from T8 to T11. There were no significance differences between Lenke 5+ve and Lenke 6 curves from T1 to T11.

    CONCLUSIONS: The compensatory ability of the unfused thoracic segment of Lenke 5+ve curves was different from the Lenke 5-ve curves, and it demonstrated characteristics similar to the Lenke 6 curves.

  2. Thandavan TM, Gani SM, San Wong C, Md Nor R
    PLoS One, 2015;10(3):e0121756.
    PMID: 25756598 DOI: 10.1371/journal.pone.0121756
    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links