Displaying all 2 publications

Abstract:
Sort:
  1. Lozano AI, García-Abenza A, Blanco Ramos F, Hasan M, Slaughter DS, Weber T, et al.
    J Phys Chem A, 2022 Sep 15;126(36):6032-6046.
    PMID: 36069053 DOI: 10.1021/acs.jpca.2c05005
    In this Review, we present a comparative study between electron and positron scattering cross sections from CO2 molecules over a broad impact energy range (0.1-5000 eV). For electron scattering, new total electron scattering cross sections (e-TCS) have been measured with a high resolution magnetically confined electron beam transmission system from 1 to 200 eV. Dissociative electron attachment processes for electron energies from 3 to 52 eV have been analyzed by measuring the relative O- anion production yield. In addition, elastic, inelastic, and total scattering cross section calculations have been carried out in the framework of the Independent Atom Model by using the Screening Corrected Additive Rule, including interference effects (IAM-SCARI). Based on the previous cross section compilation from Itikawa ( J. Phys. Chem. Ref. Data, 2002, 31, 749-767) and the present measurements and calculations, an updated recommended e-TCS data set has been used as reference values to obtain a self-consistent integral cross section data set for the elastic and inelastic (vibrational excitation, electronic excitation, and ionization) scattering channels. A similar calculation has been carried out for positrons, which shows important differences between the electron scattering behavior: e.g., more relevance of the target polarization at the lower energies, more efficient excitation of the target at intermediate energies, but a lower total scattering cross section for increasing energies, even at 5000 eV. This result does not agree with the charge independence of the scattering cross section predicted by the first Born approximation (FBA). However, we have shown that the inelastic channels follow the FBA's predictions for energies above 500 eV while the elastic part, due to the different signs of the scattering potential constituent terms, remains lower for positrons even at the maximum impact energy considered here (5000 eV). As in the case of electrons, a self-consistent set of integral positron scattering cross sections, including elastic and inelastic (vibrational excitation, electronic excitation, positronium formation, and ionization) channels is provided. Again, to derive these data, positron scattering total cross sections based on a previous compilation from Brunger et al. ( J. Phys. Chem. Ref. Data, 2017, 46, 023102) and the present calculation have been used as reference values. Data for the main inelastic channels, i.e. direct ionization and positronium formation, derived with this procedure, show excellent agreement with the experimental results available in the literature. Inconsistencies found between different model potential calculations, both for the elastic and inelastic collision processes, suggest that new calculations using more sophisticated methods are required.
  2. Costa F, Traoré-Dubuis A, Álvarez L, Lozano AI, Ren X, Dorn A, et al.
    Int J Mol Sci, 2020 Sep 22;21(18).
    PMID: 32971806 DOI: 10.3390/ijms21186947
    Electron scattering cross sections for pyridine in the energy range 0-100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links