Displaying all 3 publications

Abstract:
Sort:
  1. Gasmelseed A
    Electromagn Biol Med, 2011 Sep;30(3):136-45.
    PMID: 21861692 DOI: 10.3109/15368378.2011.596248
    This article describes the analysis of electromagnetic energy absorption properties of models of the human eye with common visual disorders. The investigation addresses two types of visual disorders, namely hyperopia (or farsightedness) and myopia (or nearsightedness). Calculations were carried out using plane multilayered method with common wireless communication frequencies of 900, 1800, and 2450 MHz. The effect of wireless radiation on the eye is studied by calculation of the specific absorption rate (SAR) in three different eye models. The results of the simulations confirmed the anticipated and more complex relationship between absorption and structural variations of the eye at these frequencies.
  2. Gasmelseed A
    Comput Methods Biomech Biomed Engin, 2011 Jul;14(7):665-71.
    PMID: 21480080 DOI: 10.1080/10255842.2011.563738
    In electromagnetic dosimetry, anatomical human models are commonly obtained by segmentation of magnetic resonance imaging or computed tomography scans. In this paper, a human head model extracted from thermal infrared images is examined in terms of its applicability to specific absorption rate (SAR) calculations. Since thermal scans are two-dimensional (2D) representation of surface temperature, this allows researchers to overcome the extensive computational demand associated with 3D simulation. The numerical calculations are performed using the finite-difference time-domain method with mesh sizes of 2 mm at 900 MHz plane wave irradiation. The power density of the incident plane wave is assumed to be 10 W/m(2). Computations were compared with a realistic anatomical head model. The results show that although there were marked differences in the local SAR distribution in the various tissues in the two models, the 1 g peak SAR values are approximately similar in the two models.
  3. Gasmelseed A, Yunus J
    Prog Biophys Mol Biol, 2014 Jan;114(1):8-12.
    PMID: 24239501 DOI: 10.1016/j.pbiomolbio.2013.10.004
    The interaction of a dipole antenna with a human eye model in the presence of a metamaterial is investigated in this paper. The finite difference time domain (FDTD) method with convolutional perfectly matched layer (CPML) formulation have been used. A three-dimensional anatomical model of the human eye with resolution of 1.25 mm × 1.25 mm × 1.25 mm was used in this study. The dipole antenna was driven by modulated Gaussian pulse and the numerical study is performed with dipole operating at 900 MHz. The analysis has been done by varying the size and value of electric permittivity of the metamaterial. By normalizing the peak SAR (1 g and 10 g) to 1 W for all examined cases, we observed how the SAR values are not affected by the different permittivity values with the size of the metamaterial kept fixed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links