Displaying all 5 publications

Abstract:
Sort:
  1. Mat Yassim AS, Asras MFF, Gazali AM, Marcial-Coba MS, Zainulabid UA, Ahmad HF
    Mater Today Proc, 2022;48:828-836.
    PMID: 33680867 DOI: 10.1016/j.matpr.2021.02.387
    SARS-CoV-2 is a very transmissible and pathogenic coronavirus which detected in Malaysia in January 2020. Nevertheless, the sample from Malaysia is still under-sequenced. Hence lacking clarity of the circulating strain in Malaysia leads to a deadlock in understanding the virus infectivity. This study aimed to investigate the genome identity of circulating COVID-19 strains in Pahang and understand disease epidemiology during the pandemic. This study leveraged high-throughput sequencing analysis for the whole genome sequencing and implemented bioinformatic technique for the analysis. Here we reported that the virus with D614G mutation in Spike protein circulates in a few Malaysia states before the Sivagangga cluster announced in Kedah in July 2020. This mutated virus includes our virus sample isolated in April 2020 from an asymptomatic patient in Pahang. Based on the phylogenetic analysis, we discovered the origin of our sample Pahang/IIUM91 was not related to Sivagangga cluster. Here, we have generated 3D structure model of Pahang/IIUM91 Spike protein. D614G mutation in Pahang/IIUM91 Spike protein increases viral stability and flexibility, hence render higher infectivity. Collectively, our results suggest for the establishment of a complete SARS-CoV-2 genome database in Malaysia. Hence, more research should be established to learn the behaviour of this virus.
  2. Roney M, Issahaku AR, Govinden U, Gazali AM, Aluwi MFFM, Zamri NB
    J Biomol Struct Dyn, 2023 Nov 09.
    PMID: 37942697 DOI: 10.1080/07391102.2023.2279280
    To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-β1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-β1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-β1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.
  3. Gazali AM, Schroderus AM, Näntö-Salonen K, Rintamäki R, Pihlajamäki J, Knip M, et al.
    Diabetologia, 2020 11;63(11):2396-2409.
    PMID: 32880687 DOI: 10.1007/s00125-020-05257-7
    AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking.

    METHODS: We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as γδ T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb+) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age.

    RESULTS: Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8-CD27- MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and β7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-γ (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb+ children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3+ T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3+ T cells, p = 0.007). No alterations in γδ T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb+ children, with the exception of an increased frequency of IL-17A+ γδ T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of γδ T cells, p = 0.002).

    CONCLUSIONS/INTERPRETATION: Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes. Graphical abstract.

  4. Wong KKV, Roney M, Uddin N, Imran S, Gazali AM, Zamri N, et al.
    J Biomol Struct Dyn, 2023;41(23):13632-13645.
    PMID: 36794726 DOI: 10.1080/07391102.2023.2178506
    Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, including anticancer activity. Here, the mechanism was clarified through network pharmacology,molecular docking and molecular dynamic simulation. Sixteen proteins were selected through network pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered from PPI network analysis based on their significance of interactions (p 
  5. Zainulabid UA, Kamarudin N, Zulkifly AH, Gan HM, Tay DD, Siew SW, et al.
    Microbiol Resour Announc, 2021 Aug 05;10(31):e0065721.
    PMID: 34351228 DOI: 10.1128/MRA.00657-21
    Here, we report the nearly complete genome sequences of nine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the D614G mutation. These viruses were detected from various infected individuals with different levels of severity from Pahang, Malaysia. In addition, this study described the presence of lineage B.1.351 as a type of variant of concern (VOC) and lineages B.1.466.2 and B.1.524 as local variants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links