Displaying all 5 publications

Abstract:
Sort:
  1. Jamil NH, Abdullah MMAB, Pa FC, Mohamad H, Ibrahim WMAW, Amonpattaratkit P, et al.
    Materials (Basel), 2021 Mar 10;14(6).
    PMID: 33801862 DOI: 10.3390/ma14061325
    Kaolin, theoretically known as having low reactivity during geopolymerization, was used as a source of aluminosilicate materials in this study. Due to this concern, it is challenging to directly produce kaolin geopolymers without pre-treatment. The addition of ground granulated blast furnace slag (GGBS) accelerated the geopolymerization process. Kaolin-GGBS geopolymer ceramic was prepared at a low sintering temperature due to the reaction of the chemical composition during the initial stage of geopolymerization. The objective of this work was to study the influence of the chemical composition towards sintering temperature of sintered kaolin-GGBS geopolymer. Kaolin-GGBS geopolymer was prepared with a ratio of solid to liquid 2:1 and cured at 60 °C for 14 days. The cured geopolymer was sintered at different temperatures: 800, 900, 1000, and 1100 °C. Sintering at 900 °C resulted in the highest compressive strength due to the formation of densified microstructure, while higher sintering temperature led to the formation of interconnected pores. The difference in the X-ray absorption near edge structure (XANES) spectra was related to the phases obtained from the X-ray diffraction analysis, such as akermanite and anothite. Thermal analysis indicated the stability of sintered kaolin-GGBS geopolymer when exposed to 1100 °C, proving that kaolin can be directly used without heat treatment in geopolymers. The geopolymerization process facilitates the stability of cured samples when directly sintered, as well as plays a significant role as a self-fluxing agent to reduce the sintering temperature when producing sintered kaolin-GGBS geopolymers.
  2. Amer AAR, Abdullah MMAB, Liew YM, A Aziz IH, Wysłocki JJ, Tahir MFM, et al.
    Materials (Basel), 2021 Feb 26;14(5).
    PMID: 33652863 DOI: 10.3390/ma14051094
    The demand for durable, resistant, and high-strength structural material has led to the use of fibers as reinforcing elements. This paper presents an investigation into the inclusion of chopped steel wool fibers (CSWFs) in cement to form a high-flexural strength cementitious composite matrix (CCM). CSWFs were used as the primary reinforcement in CCM at increments of 0.5 wt%, from 0.5-6 wt%, with ratios of cement to sand of 1:1.5 and water to cement of 0.45. The inclusion of CSWFs resulted in an excellent optimization of the physicomechanical properties of the CCM, such as its density (2.302 g/cm3), compressive strength (61.452 MPa), and maximum flexural strength (10.64 MPa), all of which exceeded the performances of other reinforcement elements reported in the literature.
  3. Ghazali MF, Abdullah MMAB, Abd Rahim SZ, Gondro J, Pietrusiewicz P, Garus S, et al.
    Materials (Basel), 2021 Mar 26;14(7).
    PMID: 33810517 DOI: 10.3390/ma14071628
    This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.
  4. Mohd Hanid MH, Abd Rahim SZ, Gondro J, Sharif S, Al Bakri Abdullah MM, Zain AM, et al.
    Materials (Basel), 2021 Mar 10;14(6).
    PMID: 33802032 DOI: 10.3390/ma14061326
    It is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould.
  5. Zulkifly K, Cheng-Yong H, Yun-Ming L, Bayuaji R, Abdullah MMAB, Ahmad SB, et al.
    Materials (Basel), 2021 Apr 15;14(8).
    PMID: 33920865 DOI: 10.3390/ma14081973
    Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0-3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0-0.1) fire propagation index.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links