AIM: To determine the risk and explanatory factors of acquiring Aspergillus in children with CF by age 5 years.
METHODS: Cross-sectional analysis of clinical, bronchoalveolar lavage and treatment data from the Australasian Cystic Fibrosis Bronchoalveolar Lavage study was used to identify predictive factors for detecting Aspergillus at age 5 years. A parametric repeated time-to-event model quantitatively described the risk and factors associated with acquiring Aspergillus and Pseudomonas aeruginosa from birth until age 5 years.
RESULTS: Cross-sectional analysis found that the number of P. aeruginosa eradication courses increased the odds of detecting Aspergillus at age 5 years (OR 1.61, 95% CI 1.23 to 2.12). The median (IQR) age for the first P. aeruginosa positive culture was 2.38 (1.32-3.79) years and 3.69 (1.68-4.74) years for the first Aspergillus positive culture. The risk of P. aeruginosa and Aspergillus events changes with time after the first year of study entry. It also decreases for P. aeruginosa after completing P. aeruginosa eradication (HR 0.15, 95% CI 0.00 to 0.79), but increases for Aspergillus events (HR 2.75, 95% CI 1.45 to 5.41). The risk of acquiring both types of events increases after having had a previous event.
CONCLUSION: In young children with CF, completing P. aeruginosa eradication therapy and previous Aspergillus events are associated with increased risk of acquiring Aspergillus.
OBJECTIVE: The objective of this study was to identify whether the epithelial lining fluid components inhibit amikacin-mediated bacterial killing.
METHODS: Two amikacin-susceptible (minimum inhibitory concentrations of 2 and 8 mg/L) Pseudomonas aeruginosa isolates were exposed in vitro to amikacin concentrations up to 976 mg/L in the presence of an acidic pH, mucin and/or surfactant as a means of simulating the epithelial lining fluid, the site of bacterial infection in pneumonia. Pharmacodynamic modelling was used to describe associations between amikacin concentrations, bacterial killing and emergence of resistance.
RESULTS: In the presence of broth alone, there was rapid and extensive (> 6 - log10) bacterial killing, with emergence of resistance identified in amikacin concentrations < 976 mg/L. In contrast, the rate and extent of bacterial killing was reduced (≤ 5 - log10) when exposed to an acidic pH and mucin. Surfactant did not appreciably impact the bacterial killing or resistance emergence when compared with broth alone for either isolate. The combination of mucin and an acidic pH further reduced the rate of bacterial killing, with the maximal bacterial killing occurring 24 h following initial exposure compared with approximately 4-8 h for either mucin or an acidic pH alone.
CONCLUSIONS: Our findings indicate that simulating the epithelial lining fluid antagonises amikacin-mediated killing of P. aeruginosa, even at the high concentrations achieved following nebulised administration.
METHODS: Between 2015 and 2018, we evaluated 131 out of 180 (72.8%) children of adolescents from the original studies at a single follow-up visit. We administered standardized questionnaires, reviewed medical records, undertook clinical examinations, performed spirometry, and scored available chest computed tomography scans.
RESULTS: Participants were seen at a mean age of 12.3 years (standard deviation: 2.6) and a median of 9.0 years (range: 5.0-13.0) after their original recruitment. With increasing age, rates of acute lower respiratory infections (ALRI) declined, while lung function was mostly within population norms (median forced expiry volume in one-second = 90% predicted, interquartile range [IQR]: 81-105; forced vital capacity [FVC] = 98% predicted, IQR: 85-114). However, 43 out of 111 (38.7%) reported chronic cough episodes. Their overall global rating judged by symptoms, including ALRI frequency, examination findings, and spirometry was well (20.3%), stable (43.9%), or improved (35.8%). Multivariable regression identified household tobacco exposure and age at first ALRI-episode as independent risk factors associated with lower FVC% predicted values.
CONCLUSION: Under our clinical care, the respiratory outcomes in late childhood or early adolescence are encouraging for these patient populations at high-risk of premature mortality. Prospective studies to further inform management throughout the life course into adulthood are now needed.
METHODS AND ANALYSIS: This multicentre, parallel, double-blind, placebo-controlled randomised trial involving seven hospitals in six cities from three different countries commenced in May 2016. Three-hundred-and-fourteen eligible Australian Indigenous, New Zealand Māori/Pacific and Malaysian children (aged 0.25 to 5 years) hospitalised for community-acquired, chest X-ray (CXR)-proven pneumonia are being recruited. Following intravenous antibiotics and 3 days of amoxicillin-clavulanate, they are randomised (stratified by site and age group, allocation-concealed) to receive either: (i) amoxicillin-clavulanate (80 mg/kg/day (maximum 980 mg of amoxicillin) in two-divided doses or (ii) placebo (equal volume and dosing frequency) for 8 days. Clinical data, nasopharyngeal swab, bloods and CXR are collected. The primary outcome is the proportion of children without chronic respiratory symptom/signs of bronchiectasis at 24 months. The main secondary outcomes are 'clinical cure' at 4 weeks, time-to-next respiratory-related hospitalisation and antibiotic resistance of nasopharyngeal respiratory bacteria.
ETHICS AND DISSEMINATION: The Human Research Ethics Committees of all the recruiting institutions (Darwin: Northern Territory Department of Health and Menzies School of Health Research; Auckland: Starship Children's and KidsFirst Hospitals; East Malaysia: Likas Hospital and Sarawak General Hospital; Kuala Lumpur: University of Malaya Research Ethics Committee; and Klang: Malaysian Department of Health) have approved the research protocol version 7 (13 August 2018). The RCT and other results will be submitted for publication.
TRIAL REGISTRATION: ACTRN12616000046404.
METHODS AND ANALYSIS: We are undertaking an international multicentre, double-blind, placebo-RCT to evaluate whether 12 months of erdosteine is beneficial for children and adults with bronchiectasis. We will recruit 194 children and adults with bronchiectasis to a parallel, superiority RCT at eight sites across Australia, Malaysia and Philippines. Our primary endpoint is the rate of exacerbations over 12 months. Our main secondary outcomes are QoL, exacerbation duration, time-to-next exacerbation, hospitalisations and lung function.
ETHICS AND DISSEMINATION: The Human Research Ethics Committees (HREC) of Children's Health Queensland (for all Australian sites), University of Malaya Medical Centre (Malaysia) and St. Luke's Medical Centre (Philippines) approved the study. We will publish the results and share the outcomes with the academic and medical community, funding and relevant patient organisations.
TRIAL REGISTRATION NUMBER: ACTRN12621000315819.
METHODS: We undertook a multicenter, double-blind, superiority, randomized controlled trial involving 7 Australian, New Zealand, and Malaysian hospitals. Children aged 3 months to ≤5 years hospitalized with radiographic-confirmed CAP who received 1-3 days of intravenous antibiotics, then 3 days of oral amoxicillin-clavulanate, were randomized to either extended-course (8-day oral amoxicillin-clavulanate) or standard-course (8-day oral placebo) arms. Children were reviewed at 12 and 24 months. The primary outcome was children with the composite endpoint of chronic respiratory symptoms/signs (chronic cough at 12 and 24 months; ≥1 subsequent hospitalized acute lower respiratory infection by 24 months; or persistent and/or new chest radiographic signs at 12-months) at 24-months postdischarge, analyzed by intention-to-treat, where children with incomplete follow-up were assumed to have chronic respiratory symptoms/signs ("worst-case" scenario).
RESULTS: A total of 324 children were randomized [extended-course (n = 163), standard-course (n = 161)]. For our primary outcome, chronic respiratory symptoms/signs occurred in 97/163 (60%) and 94/161 (58%) children in the extended-courses and standard-courses, respectively [relative risk (RR) = 1.02, 95% confidence interval (CI): 0.85-1.22]. Among children where all sub-composite outcomes were known, chronic respiratory symptoms/signs between groups, RR = 1.10, 95% CI: 0.69-1.76 [extended-course = 27/93 (29%) and standard-course = 24/91 (26%)]. Additional sensitivity analyses also revealed no between-group differences.
CONCLUSION: Among children from high-risk populations hospitalized with CAP, 13-14 days of antibiotics (versus 5-6 days), did not improve long-term respiratory outcomes.