Displaying all 13 publications

Abstract:
Sort:
  1. Hébert-Losier K
    J Athl Train, 2017 Oct;52(10):910-917.
    PMID: 28937801 DOI: 10.4085/1062-6050-52.8.02
    CONTEXT:   The Lower Quarter Y-Balance Test (LQ-YBT) was developed to provide an effective and efficient screen for injury risk in sports. Earlier protocol recommendations for the LQ-YBT involved the athlete placing the hands on the hips and the clinician normalizing scores to lower limb length measured from the anterior-superior iliac spine to the lateral malleolus. The updated LQ-YBT protocol recommends the athlete's hands be free moving and the clinician measure lower limb length to the medial malleolus.

    OBJECTIVE:   To investigate the effect of hand position and lower limb length measurement method on LQ-YBT scores and their interpretation.

    DESIGN:   Cross-sectional study.

    SETTING:   National Sports Institute of Malaysia.

    PATIENTS OR OTHER PARTICIPANTS:   A total of 46 volunteers, consisting of 23 men (age = 25.7 ± 4.6 years, height = 1.70 ± 0.05 m, mass = 69.3 ± 9.2 kg) and 23 women (age = 23.5 ± 2.5 years, height = 1.59 ± 0.07 m, mass = 55.7 ± 10.6 kg).

    INTERVENTION(S):   Participants performed the LQ-YBT with hands on hips and hands free to move on both lower limbs.

    MAIN OUTCOME MEASURE(S):   In a single-legged stance, participants reached with the contralateral limb in each of the anterior, posteromedial, and posterolateral directions 3 times. Maximal reach distances in each direction were normalized to lower limb length measured from the anterior-superior iliac spine to the lateral and medial malleoli. Composite scores (average of the 3 normalized reach distances) and anterior-reach differences (in raw units) were extracted and used to identify participants at risk for injury (ie, anterior-reach difference ≥4 cm or composite score ≤94%). Data were analyzed using paired t tests, Fisher exact tests, and magnitude-based inferences (effect size [ES], ±90% confidence limits [CLs]).

    RESULTS:   Differences between hand positions in normalized anterior-reach distances were trivial (t91 = -2.075, P = .041; ES = 0.12, 90% CL = ±0.10). In contrast, reach distances were greater when the hands moved freely for the normalized posteromedial (t91 = -6.404, P < .001; ES = 0.42, 90% CL = ±0.11), posterolateral (t91 = -6.052, P < .001; ES = 0.58, 90% CL = ±0.16), and composite (t91 = -7.296, P < .001; ES = 0.47, 90% CL = ±0.11) scores. A similar proportion of the cohort was classified as at risk with the hands on the hips (35% [n = 16]) and the hands free to move (43% [n = 20]; P = .52). However, the participants classified as at risk with the hands on the hips were not all categorized as at risk with the hands free to move and vice versa. The lower limb length measurement method exerted trivial effects on LQ-YBT outcomes.

    CONCLUSIONS:   Hand position exerted nontrivial effects on LQ-YBT outcomes and interpretation, whereas the lower limb length measurement method had trivial effects.

  2. Hébert-Losier K, Abd Rahman F
    Physiother Theory Pract, 2018 Jun;34(6):483-494.
    PMID: 29281461 DOI: 10.1080/09593985.2017.1420117
    The Posture Pro software is used for photogrammetry assessment of posture and has been commercially available for several years. Along with symmetry-related measures, a Posture Number® is calculated to reflect the sum of postural deviations. Our aim was to investigate the intra- and inter-rater reliability of measures extracted using the Posture Pro 8 software without using reference markers on subjects. Four raters assessed the standing posture of 40 badminton players (20 males, 20 females) from anterior, lateral, and posterior photographs. Thirty-three postural measures were extracted using visual landmarks as guide. Reliability was quantified using intra-class correlation coefficient (ICC) and typical error of measurement (TEM). Overall, the intra-rater reliability was considered good to excellent for nearly all measures. However, only two measures had excellent inter-rater reliability, with 13 and 18 measures exhibiting good and fair inter-rater reliability, respectively. Posture Pro specific measures (n = 9) exhibited good-to-excellent intra-rater and fair-to-excellent inter-rater reliability, with small-to-moderate and small-to-large TEM, respectively. Overall, the Posture Pro 8 software can be considered a reliable tool for assessing a range of posture-relevant measures from photographs, particularly when performed by the same examiner. The Posture Number® demonstrated generally acceptable intra- and inter-rater reliability. Nonetheless, investigations on the validity, sensitivity, and interpretation of this measure are essential to confirm its clinical relevance.
  3. Hébert-Losier K, Zinner C, Platt S, Stöggl T, Holmberg HC
    Sports Med, 2017 Feb;47(2):319-342.
    PMID: 27334280 DOI: 10.1007/s40279-016-0573-2
    BACKGROUND: Sprint events in cross-country skiing are unique not only with respect to their length (0.8-1.8 km), but also in involving four high-intensity heats of ~3 min in duration, separated by a relatively short recovery period (15-60 min).

    OBJECTIVE: Our aim was to systematically review the scientific literature to identify factors related to the performance of elite sprint cross-country skiers.

    METHODS: Four electronic databases were searched using relevant medical subject headings and keywords, as were reference lists, relevant journals, and key authors in the field. Only original research articles addressing physiology, biomechanics, anthropometry, or neuromuscular characteristics and elite sprint cross-country skiers and performance outcomes were included. All articles meeting inclusion criteria were quality assessed. Data were extracted from each article using a standardized form and subsequently summarized.

    RESULTS: Thirty-one articles met the criteria for inclusion, were reviewed, and scored an average of 66 ± 7 % (range 56-78 %) upon quality assessment. All articles except for two were quasi-experimental, and only one had a fully-experimental research design. In total, articles comprised 567 subjects (74 % male), with only nine articles explicitly reporting their skiers' sprint International Skiing Federation points (weighted mean 116 ± 78). A similar number of articles addressed skating and classical techniques, with more than half of the investigations involving roller-skiing assessments under laboratory conditions. A range of physiological, biomechanical, anthropometric, and neuromuscular characteristics was reported to relate to sprint skiing performance. Both aerobic and anaerobic capacities are important qualities, with the anaerobic system suggested to contribute more to the performance during the first of repeated heats; and the aerobic system during subsequent heats. A capacity for high speed in all the following instances is important for the performance of sprint cross-country skiers: at the start of the race, at any given point when required (e.g., when being challenged by a competitor), and in the final section of each heat. Although high skiing speed is suggested to rely primarily on high cycle rates, longer cycle lengths are commonly observed in faster skiers. In addition, faster skiers rely on different technical strategies when approaching peak speeds, employ more effective techniques, and use better coordinated movements to optimize generation of propulsive force from the resultant ski and pole forces. Strong uphill technique is critical to race performance since uphill segments are the most influential on race outcomes. A certain strength level is required, although more does not necessarily translate to superior sprint skiing performance, and sufficient strength-endurance capacities are also of importance to minimize the impact and accumulation of fatigue during repeated heats. Lastly, higher lean mass does appear to benefit sprint skiers' performance, with no clear advantage conferred via body height and mass.

    LIMITATIONS: Generalization of findings from one study to the next is challenging considering the array of experimental tasks, variables defining performance, fundamental differences between skiing techniques, and evolution of sprint skiing competitions. Although laboratory-based measures can effectively assess on-snow skiing performance, conclusions drawn from roller-skiing investigations might not fully apply to on-snow skiing performance. A low number of subjects were females (only 17 %), warranting further studies to better understand this population. Lastly, more training studies involving high-level elite sprint skiers and investigations pertaining to the ability of skiers to maintain high-sprint speeds at the end of races are recommended to assist in understanding and improving high-level sprint skiing performance, and resilience to fatigue.

    CONCLUSIONS: Successful sprint cross-country skiing involves well-developed aerobic and anaerobic capacities, high speed abilities, effective biomechanical techniques, and the ability to develop high forces rapidly. A certain level of strength is required, particularly ski-specific strength, as well as the ability to withstand fatigue across the repeated heats of sprint races. Cross-country sprint skiing is demonstrably a demanding and complex sport, where high-performance skiers need to simultaneously address physiological, biomechanical, anthropometric, and neuromuscular aspects to ensure success.

  4. Lussiana T, Gindre C, Mourot L, Hébert-Losier K
    Eur J Sport Sci, 2017 Aug;17(7):847-857.
    PMID: 28488928 DOI: 10.1080/17461391.2017.1325072
    Running patterns are often categorized into subgroups according to common features before data analysis and interpretation. The Volodalen® method is a simple field-based tool used to classify runners into aerial or terrestrial using a 5-item subjective rating scale. We aimed to validate the Volodalen® method by quantifying the relationship between its subjective scores and 3D biomechanical measures. Fifty-four runners ran 30 s on a treadmill at 10, 12, 14, 16, and 18 km h-1 while their kinematics were assessed subjectively using the Volodalen® method and objectively using 3D motion capture. For each runner and speed, two researchers scored the five Volodalen® items on a 1-to-5 scale, which addressed vertical oscillation, upper-body motion, pelvis and foot position at ground contact, and footstrike pattern. Seven 3D biomechanical parameters reflecting the subjective items were also collected and correlated to the subjective scores. Twenty-eight runners were classified as aerial and 26 as terrestrial. Runner classification did not change with speed, but the relative contribution of the biomechanical parameters to the subjective classification was speed dependent. The magnitude of correlations between subjective and objective measures ranged from trivial to very large. Five of the seven objective parameters significantly differed between aerial and terrestrial runners, and these parameters demonstrated the strongest correlations to the subjective scores. Our results support the validity of the Volodalen® method, whereby the visual appreciation of running gait reflected quantifiable objective parameters. Two minor modifications to the method are proposed to simplify its use and improve agreement between subjective and objective measures.
  5. Lussiana T, Patoz A, Gindre C, Mourot L, Hébert-Losier K
    J Exp Biol, 2019 03 18;222(Pt 6).
    PMID: 30787136 DOI: 10.1242/jeb.192047
    A lower duty factor (DF) reflects a greater relative contribution of leg swing versus ground contact time during the running step. Increasing time on the ground has been reported in the scientific literature to both increase and decrease the energy cost (EC) of running, with DF reported to be highly variable in runners. As increasing running speed aligns running kinematics more closely with spring-mass model behaviours and re-use of elastic energy, we compared the centre of mass (COM) displacement and EC between runners with a low (DFlow) and high (DFhigh) duty factor at typical endurance running speeds. Forty well-trained runners were divided in two groups based on their mean DF measured across a range of speeds. EC was measured from 4 min treadmill runs at 10, 12 and 14 km h-1 using indirect calorimetry. Temporal characteristics and COM displacement data of the running step were recorded from 30 s treadmill runs at 10, 12, 14, 16 and 18 km h-1 Across speeds, DFlow exhibited more symmetrical patterns between braking and propulsion phases in terms of time and vertical COM displacement than DFhigh DFhigh limited global vertical COM displacements in favour of horizontal progression during ground contact. Despite these running kinematics differences, no significant difference in EC was observed between groups. Therefore, both DF strategies seem energetically efficient at endurance running speeds.
  6. Patoz A, Lussiana T, Gindre C, Hébert-Losier K
    Sports (Basel), 2019 Jun 17;7(6).
    PMID: 31212983 DOI: 10.3390/sports7060147
    Close to 90% of recreational runners rearfoot strike in a long-distance road race. This prevalence has been obtained from North American cohorts of runners. The prevalence of rearfoot strikers has not been extensively examined in an Asian population of recreational runners. Therefore, the aim of this study was to determine the prevalence of rearfoot, midfoot, and forefoot strikers during a long-distance road race in Asian recreational runners and compare this prevalence to reported values in the scientific literature. To do so, we classified the foot strike pattern of 950 recreational runners at the 10 km mark of the Singapore marathon (77% Asian field). We observed 71.1%, 16.6%, 1.7%, and 10.6% of rearfoot, midfoot, forefoot, and asymmetric strikers, respectively. Chi-squared tests revealed significant differences between our foot strike pattern distribution and those reported from North American cohorts (P < 0.001). Our foot strike pattern distribution was similar to one reported from elite half-marathon runners racing in Japan (Fisher exact test, P = 0.168). We conclude that the prevalence of rearfoot strikers is lower in Asian than North American recreational runners. Running research should consider and report ethnicity of participants given that ethnicity can potentially explain biomechanical differences in running patterns.
  7. Hébert-Losier K, Pini A, Vantini S, Strandberg J, Abramowicz K, Schelin L, et al.
    Clin Biomech (Bristol, Avon), 2015 Dec;30(10):1153-61.
    PMID: 26365484 DOI: 10.1016/j.clinbiomech.2015.08.010
    Despite interventions, anterior cruciate ligament ruptures can cause long-term deficits. To assist in identifying and treating deficiencies, 3D-motion analysis is used for objectivizing data. Conventional statistics are commonly employed to analyze kinematics, reducing continuous data series to discrete variables. Conversely, functional data analysis considers the entire data series.
  8. Hébert-Losier K, Yin NS, Beaven CM, Tee CCL, Richards J
    J Electromyogr Kinesiol, 2019 Feb;44:36-45.
    PMID: 30496944 DOI: 10.1016/j.jelekin.2018.11.009
    Kinesiology-type tape (KTT) has become popular in sports for injury prevention, rehabilitation, and performance enhancement. Many cyclists use patella KTT; however, its benefits remain unclear, especially in uninjured elite cyclists. We used an integrated approach to investigate acute physiological, kinematic, and electromyographic responses to patella KTT in twelve national-level male cyclists. Cyclists completed four, 4-minute submaximal efforts on an ergometer at 100 and 200 W with and without patella KTT. Economy, energy cost, oxygen cost, heart rate, efficiency, 3D kinematics, and lower-body electromyography signals were collected over the last minute of each effort. Comfort levels and perceived change in knee stability and performance with KTT were recorded. The effects of KTT were either unclear, non-significant, or clearly trivial on all collected physiological and kinematic measures. KTT significantly, clearly, and meaningfully enhanced vastus medialis peak, mean, and integrated electromyographic signals, and vastus medialis-to-lateralis activation. Electromyographic measures from biceps femoris and biceps-to-rectus femoris activation ratio decreased in either a significant or clinically meaningful manner. Despite most cyclists perceiving KTT as comfortable, increasing stability, and improving performance, the intervention exerted no considerable effects on all physiological and kinematic measures. KTT did alter neuromuscular recruitment, which has potential implications for injury prevention.
  9. Lussiana T, Gindre C, Hébert-Losier K, Sagawa Y, Gimenez P, Mourot L
    PMID: 27617625
    There is no unique or 'ideal' running pattern that is the most economical for all runners. Classifying the global running patterns of individuals into two categories (aerial and terrestrial) using the Volodalen® method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare RE between aerial and terrestrial runners.
  10. Patoz A, Lussiana T, Breine B, Gindre C, Malatesta D, Hébert-Losier K
    Sports Biomech, 2022 Jul 04.
    PMID: 35787231 DOI: 10.1080/14763141.2022.2094825
    Duty factor (DF) and step frequency (SF) are key running pattern determinants. However, running patterns may change with speed if DF and SF changes are inconsistent across speeds. We examined whether the relative positioning of runners was consistent: 1) across five running speeds (10-18 km/h) for four temporal variables [DF, SF, and their subcomponents: contact (tc) and flight (tf) time]; and 2) across these four temporal variables at these five speeds. Three-dimensional whole-body kinematics were acquired from 52 runners, and deviations from the median for each variable (normalised to minimum-maximum values) were extracted. Across speeds for all variables, correlations on the relative positioning of individuals were high to very high for 2-4 km/h speed differences, and moderate to high for 6-8 km/h differences. Across variables for all speeds, correlations were low between DF-SF, very high between DF-tf, and low to high between DF-tc, SF-tc, and SF-tf. Hence, the consistency in running patterns decreased as speed differences increased, suggesting that running patterns be assessed using a range of speeds. Consistency in running patterns at a given speed was low between DF and SF, corroborating suggestions that using both variables can encapsulate the full running pattern spectrum.
  11. Teichmann J, Suwarganda EK, Beaven CM, Hébert-Losier K, Lee JW, Tenllado Vallejo F, et al.
    J Sport Rehabil, 2016 Dec 19.
    PMID: 27992260 DOI: 10.1123/jsr.2016-0082
    CONTEXT: Sensorimotor training is commonly used in a rehabilitative setting; however, the effectiveness of an unexpected disturbance program (UDP) to enhance performance measures in uninjured elite athletes is unknown.

    OBJECTIVE: To assess the impact of a three-week UDP program onstrength, power, and proprioceptive measures.

    DESIGN: Matched-group, pre- post design.

    SETTING: National Sports Institute.

    PARTICIPANTS: Twenty-one international-level female field hockey athletes.

    INTERVENTIONS: Two 45 min UDP sessions were incorporated into each week of a three week training program (total 6 sessions).

    MAIN OUTCOME MEASURES: One-repetition maximum strength, lower limb power, 20 m running speed, and proprioception tests were performed before and after the experimental period.

    RESULTS: Substantial improvements in running sprint speed at 5- (4.4 ± 2.6%; Effect Size [ES]: 0.88), 10- (2.1 ± 1.9%; ES: 0.51), and 20-m (1.0 ± 1.6%; ES: 0.23) were observed in the UDP group. Squat jump performance was also clearly enhanced when compared to the control group (3.1 ± 6.1%; ES: 0.23). Small but clear improvements in maximal strength were observed in both groups.

    CONCLUSION: A three week UDP can elicit clear enhancements in running sprint speed and concentric-only jump performance. These improvements are suggestive of enhanced explosive strength and are particularly notable given the elite training status of the cohort and relatively short duration of the intervention. Thus, we would reiterate the statement by Gruber and colleagues (2004) that sensorimotor training is a "highly efficient" modality for improving explosive strength.

  12. Washif JA, Farooq A, Krug I, Pyne DB, Verhagen E, Taylor L, et al.
    Sports Med, 2022 04;52(4):933-948.
    PMID: 34687439 DOI: 10.1007/s40279-021-01573-z
    OBJECTIVE: Our objective was to explore the training-related knowledge, beliefs, and practices of athletes and the influence of lockdowns in response to the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

    METHODS: Athletes (n = 12,526, comprising 13% world class, 21% international, 36% national, 24% state, and 6% recreational) completed an online survey that was available from 17 May to 5 July 2020 and explored their training behaviors (training knowledge, beliefs/attitudes, and practices), including specific questions on their training intensity, frequency, and session duration before and during lockdown (March-June 2020).

    RESULTS: Overall, 85% of athletes wanted to "maintain training," and 79% disagreed with the statement that it is "okay to not train during lockdown," with a greater prevalence for both in higher-level athletes. In total, 60% of athletes considered "coaching by correspondence (remote coaching)" to be sufficient (highest amongst world-class athletes). During lockdown, 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links