Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications.
Long-term maintenance of neural stem cells in vitro is crucial for their stage specific roles in neurogenesis. To have an in-depth understanding of optimal conditional microenvironmental niche for long-term maintenance of neural stem cells (NSCs), we imposed different combinatorial treatment of growth factors to EGF/FGF-responsive cells. We hypothesized, that IGF-1-treatment can provide an optimal niche for long-term maintenance and proliferation of EGF/FGF-responsive NSCs.