Displaying all 2 publications

Abstract:
Sort:
  1. Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A
    Crit Rev Food Sci Nutr, 2023;63(23):6393-6411.
    PMID: 35089844 DOI: 10.1080/10408398.2022.2031099
    Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
  2. Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, et al.
    Ultrason Sonochem, 2021 Nov;79:105755.
    PMID: 34562735 DOI: 10.1016/j.ultsonch.2021.105755
    Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links