Thermoplastic starch is a potentially sustainable and biodegradable material. However, it possesses some limitations in terms of mechanical performance and high moisture sensitivity. In this current work, the characteristics of thermoplastic cassava starch (TPCS) containing palm wax at various loading were evaluated. TPCS was prepared via hot pressing by varying the ratios of palm wax (2.5, 5, 10, and 15 wt%). Next, characterization via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), mechanical, water solubility, thickness swelling and moisture absorption tests, were conducted on the samples. The findings showed that incorporating starch-based thermoplastics with palm wax has remarkably improved mechanical characteristics of the thermoplastic blends. Besides, the morphology of the samples demonstrated irregular and rougher cleavage fracture after palm wax addition. FT-IR indicated the existence of intermolecular interaction between TPCS and palm wax with the intermolecular hydrogen bonds that existed between them. The thermal stability of TPCS has improved with rising palm wax content. The incorporation of 15 wt% palm wax resulted in the lowest moisture absorption value among the samples. Overall, the developed TPCS/palm wax with improved mechanical and moisture resistance characteristics has the potential to be used as biodegradable materials.
This study is focused on developing and enhancing the properties of durian peel fiber (DPF) reinforced thermoplastic cassava starch (TPCS) composites. The proposed DPF was extracted from agro-waste and incorporated into TPCS with various contents of DPF (10, 20, 30, 40, and 50 wt%) via compression molding. The mechanical and thermal characteristics of the fabricated composites were studied. The thermal properties of the biocomposite were improved with the addition of DPF, as evidenced by an increase in the material's thermal stability and indicated by a higher onset decomposition temperature. The integration of DPF into TPCS improved the biodegradation rate process of the composites. Besides, the results indicated that incorporating DPF in TPCS composites enhanced tensile and flexural properties, with a 40 wt% DPF content exhibited the highest modulus and strength. The tensile and flexural strengths of TPCS/DPF composites were raised significantly from 2.96 to 21.89 MPa and 2.5 to 35.0 MPa, respectively, compared to the control TPCS sample, as DPF increased from 0 to 40 wt%. This finding was consistent with Fourier-Transform Infrared (FT-IR) spectroscopy and scanning electron micrograph (SEM), which showed good interaction between DPF and TPCS matrix. The analysis revealed that DPF at a 40 wt% ratio was the best composition compared to the other ratio. Finally, based on improved results, DPF was identified as a potential resource of green reinforcement for the biodegradable TPCS matrix.
The potential of Hylocereus polyrhizus peel (HPP) as a new eco-friendly reinforcement for thermoplastic sago starch/agar composite (TPSS/agar) was investigated. The integration of HPP into TPSS/agar composite aimed to enhance its mechanical and thermal characteristics. The study employed Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC), as well as mechanical, physical properties and soil burial testing to analyse the composites. The results showed a favourable miscibility between the matrix and filler, while at higher concentrations of HPP, the starch granules became more visible. The tensile and impact properties of the composites improved significantly after incorporating HPP at 20 wt%, with values of 12.73 MPa and 1.87 kJ/m2, respectively. The glass transition temperature (Tg) and initial decomposition temperature (Ton) decreased with the addition of HPP. The density of the composites reduced from 1.51 ± 0.01 to 1.26 ± 0.01 g/cm3 as the HPP amount increased. The environmental properties indicated that the composites can be composted, with weight loss accelerating from 35 to 60 % and 61 to 91 % by the addition of HPP in 2- and 4-weeks' time, respectively. The study demonstrates the potential of TPSS/agar/HPP composites as eco-friendly materials for various applications.