Affiliations 

  • 1 Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia; German-Malaysian Institute, Jalan Ilmiah Taman Universiti, 43000 Kajang, Selangor, Malaysia
  • 2 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. Electronic address: ridhwan@utem.edu.my
  • 3 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
  • 4 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • 5 Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Taboh Naning, Alor Gajah, Melaka 78000, Malaysia
Int J Biol Macromol, 2022 Jan 01;194:851-860.
PMID: 34838853 DOI: 10.1016/j.ijbiomac.2021.11.139

Abstract

Thermoplastic starch is a potentially sustainable and biodegradable material. However, it possesses some limitations in terms of mechanical performance and high moisture sensitivity. In this current work, the characteristics of thermoplastic cassava starch (TPCS) containing palm wax at various loading were evaluated. TPCS was prepared via hot pressing by varying the ratios of palm wax (2.5, 5, 10, and 15 wt%). Next, characterization via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), mechanical, water solubility, thickness swelling and moisture absorption tests, were conducted on the samples. The findings showed that incorporating starch-based thermoplastics with palm wax has remarkably improved mechanical characteristics of the thermoplastic blends. Besides, the morphology of the samples demonstrated irregular and rougher cleavage fracture after palm wax addition. FT-IR indicated the existence of intermolecular interaction between TPCS and palm wax with the intermolecular hydrogen bonds that existed between them. The thermal stability of TPCS has improved with rising palm wax content. The incorporation of 15 wt% palm wax resulted in the lowest moisture absorption value among the samples. Overall, the developed TPCS/palm wax with improved mechanical and moisture resistance characteristics has the potential to be used as biodegradable materials.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.