In the title isonicotinohydrazide hydrate, C14H12BrN3O2·H2O {systematic name: N'-[(1E)-1-(5-bromo-2-hy-droxy-phen-yl)ethyl-idene]pyridine-4-carbohydrazide monohydrate}, the central CN2O region of the organic mol-ecule is planar and the conformation about the imine-C=N bond is E. While an intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond is evident, the dihedral angle between the central residue and the benzene rings is 48.99 (9)°. Overall, the mol-ecule is twisted, as seen in the dihedral angle of 71.79 (6)° between the outer rings. In the crystal, hydrogen-bonding inter-actions, i.e. hydrazide-N-H⋯O(water), water-O-H⋯O(carbon-yl) and water-O-H⋯N(pyrid-yl), lead to supra-molecular ribbons along the a-axis direction. Connections between these, leading to a three-dimensional architecture, are mediated by Br⋯Br halogen bonding [3.5366 (3) Å], pyridyl-C-H⋯O(carbon-yl) as well as weak π-π inter-actions [inter-centroid separation between benzene rings = 3.9315 (12) Å]. The Hirshfeld surface analysis reveals the importance of hydrogen atoms in the supra-molecular connectivity as well as the influence of the Br⋯Br halogen bonding.
The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol-ecule: N,N'-bis-(pyridin-4-ylmeth-yl)ethanedi-amide], comprises a half mol-ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol-ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra-molecular amide-N-H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol-ecule adopts an anti-periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra-molecular layers parallel to (10) are generated owing the formation of amide-N-H⋯N(pyrid-yl) hydrogen bonds. The layers stack encompassing benzene mol-ecules which provide the links between layers via methyl-ene-C-H⋯π(benzene) and benzene-C-H⋯π(pyrid-yl) inter-actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol-1; electrostatic forces) is just over double that by the C-H⋯π contacts (dispersion forces).
The title compound, [Sn(CH3)2(C5H8NOS2)2], has the Sn(IV) atom bound by two methyl groups which lie over the weaker Sn-S bonds formed by two asymmetrically chelating di-thio-carbamate ligands so that the coordination geometry is skew-trapezoidal bipyramidal. The most prominent feature of the mol-ecular packing are secondary Sn⋯S inter-actions [Sn⋯S = 3.5654 (7) Å] that lead to centrosymmetric dimers. These are connected into a three-dimensional architecture via methyl-ene-C-H⋯S and methyl-C-H⋯O(morpholino) inter-actions. The Sn⋯S inter-actions are clearly evident in the Hirshfeld surface analysis of the title compound along with a number of other inter-molecular contacts.
The Sn(IV) atom in the title diorganotin compound, [Sn(C7H6F)2Cl2(C2H6OS)2], is located on a centre of inversion, resulting in the C2Cl2O2 donor set having an all-trans disposition of like atoms. The coordination geometry approximates an octa-hedron. The crystal features C-H⋯F, C-H⋯Cl and C-H⋯π inter-actions, giving rise to a three-dimensional network. The respective influences of the Cl⋯H/H⋯Cl and F⋯H/H⋯F contacts to the mol-ecular packing are clearly evident from the analysis of the Hirshfeld surface.
The title compound, (C6H11)3PS (systematic name: tri-cyclo-hexyl-λ(5)-phosphane-thione), is a triclinic (P-1, Z' = 1) polymorph of the previously reported ortho-rhom-bic form (Pnma, Z' = 1/2) [Kerr et al. (1977 ▸). Can. J. Chem. 55, 3081-3085; Reibenspies et al. (1996 ▸). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol-ecule in the triclinic polymorph, cf. the mirror-symmetric mol-ecule in the ortho-rhom-bic form, these differences are not chemically significant. The major feature of the mol-ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C-H⋯S(thione) inter-actions. The chains pack with no directional inter-actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts.
The title compound, [Re(C3H6NS2)(C2H3N)(CO)3], features an octa-hedrally coordinated Re(I) atom within a C3NS2 donor set defined by three carbonyl ligands in a facial arrangement, an aceto-nitrile N atom and two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. In the crystal, di-thio-carbamate-methyl-H⋯O(carbon-yl) inter-actions lead to supra-molecular chains along [36-1]; both di-thio-carbamate S atoms participate in intra-molecular methyl-H⋯S inter-actions. Further but weaker aceto-nitrile-C-H⋯O(carbonyl) inter-actions assemble mol-ecules in the ab plane. The nature of the supra-molecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the C-H⋯O contacts are predominant on the Hirshfeld surface and, indeed, on those of related [Re(CO)3(C3H6NS2)L] structures.
The title compound, [Cu(C5H5NO2S2)(C18H15P)2]·CHCl3, features a tetra-hedrally coordinated CuI atom within a P2S2 donor set defined by two phosphane P atoms and by two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. Both intra- and inter-molecular hy-droxy-O-H⋯O(hydroxy) hydrogen bonding is observed: the former closes an eight-membered {⋯HOC2NC2O} ring, whereas the latter connects centrosymmetrically related mol-ecules into dimeric aggregates via eight-membered {⋯H-O⋯H-O}2 synthons. The complex mol-ecules are arranged to form channels along the c axis in which reside the chloro-form mol-ecules, being connected by Cl⋯π(arene) and short S⋯Cl [3.3488 (9) Å] inter-actions. The inter-molecular inter-actions have been investigated further by Hirshfeld surface analysis, which shows the conventional hydrogen bonding to be very localized with the main contributors to the surface, at nearly 60%, being H⋯H contacts. Solution NMR studies indicate that whilst the same basic mol-ecular structure is retained in solution, the tri-phenyl-phosphane ligands are highly labile, exchanging rapidly with free Ph3P at room temperature.
The complete mol-ecule of the binuclear title complex, bis-[μ-1H-1,2,4-triazole-5(4H)-thione-κ2 S:S]bis-{(thio-cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio-cyanate ligand, resulting in a distorted AgS4 tetra-hedral coordination geometry. An intra-molecular N-H⋯S(thio-cyanate) hydrogen bond is noted. In the crystal, amine-N-H⋯S(thione), N-H⋯N(triazol-yl) and N-H⋯N(thio-cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C-H⋯S(thio-cyanate), triazolyl-C-H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter-actions as well as face-to-face π-π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.
The title trinuclear compound, [Cu3(C5H8NS2)Cl2(C6H15P)3], has the di-thio-carbamate ligand symmetrically chelating one CuI atom and each of the S atoms bridging to another CuI atom. Both chloride ligands are bridging, one being μ3- and the other μ2-bridging. Each Et3P ligand occupies a terminal position. Two of the CuI atoms exist within Cl2PS donor sets and the third is based on a ClPS2 donor set, with each coordination geometry based on a distorted tetra-hedron. The constituents defining the core of the mol-ecule, i.e. Cu3Cl2S2, occupy seven corners of a distorted cube. In the crystal, linear supra-molecular chains along the c axis are formed via phosphane-methyl-ene-C-H⋯Cl and pyrrolidine-methyl-ene-C-H⋯π(chelate) inter-actions, and these chains pack without directional inter-actions between them. An analysis of the Hirshfeld surface points to the predominance of H atoms at the surface, i.e. contributing 86.6% to the surface, and also highlights the presence of C-H⋯π(chelate) inter-actions.
The title diorganotin compound, [Sn(CH3)2(C28H32N2O4)], features a distorted SnC2NO2 coordination geometry almost inter-mediate between ideal trigonal-bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion via two alkoxide O and hydrazinyl N atoms; an intra-molecular hy-droxy-O-H⋯N(hydrazin-yl) hydrogen bond is noted. The alk-oxy chain has an all-trans conformation, and to the first approximation, the mol-ecule has local mirror symmetry relating the two Sn-bound methyl groups. Supra-molecular layers sustained by imine-C-H⋯O(hy-droxy), π-π [between dec-yloxy-substituted benzene rings with an inter-centroid separation of 3.7724 (13) Å], C-H⋯π(arene) and C-H⋯π(chelate ring) inter-actions are formed in the crystal; layers stack along the c axis with no directional inter-actions between them. The presence of C-H⋯π(chelate ring) inter-actions in the crystal is clearly evident from an analysis of the calculated Hirshfeld surface.