The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
Plant virus infections are known to alter host plant attractiveness and suitability for insect herbivores. This study was conducted to determine how cucumber mosaic virus (CMV)-infected chilli plants affect the fitness and settling preferences of nonvector whitefly, Bemisia tabaci adults under dual-choice conditions with volatile organic compounds analyzed using solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS). Results showed that the presence of CMV in chilli plants substantially affects the settling preferences of the B. tabaci, which preferred to settle on noninfected plants. Duration of the egg stage and the longevity and fecundity of adult B. tabaci on CMV-infected chilli plants were not markedly different from those on noninfected chilli plants. In contrast, the developmental time from egg to adult was significantly reduced in CMV-infected chilli plants compared to the noninfected plants. The results also showed that CMV-infected chilli plants released significantly more linalool and phenylacetaldehyde than noninfected plants. Overall, it was suggested that the behavioral response of B. tabaci might be modified by CMV-infected plants, which alter the release of specific headspace volatiles. Based on these results, the modification of plant volatile profiles may help in enhancing the effectiveness of biological control and the protection of crop plants against B. tabaci.