Cloud ERP is a type of enterprise resource planning (ERP) system that runs on the vendor's cloud platform instead of an on-premises network, enabling companies to connect through the Internet. The goal of this study was to rank and prioritise the factors driving cloud ERP adoption by organisations and to identify the critical issues in terms of security, usability, and vendors that impact adoption of cloud ERP systems. The assessment of critical success factors (CSFs) in on-premises ERP adoption and implementation has been well documented; however, no previous research has been carried out on CSFs in cloud ERP adoption. Therefore, the contribution of this research is to provide research and practice with the identification and analysis of 16 CSFs through a systematic literature review, where 73 publications on cloud ERP adoption were assessed from a range of different conferences and journals, using inclusion and exclusion criteria. Drawing from the literature, we found security, usability, and vendors were the top three most widely cited critical issues for the adoption of cloud-based ERP; hence, the second contribution of this study was an integrative model constructed with 12 drivers based on the security, usability, and vendor characteristics that may have greater influence as the top critical issues in the adoption of cloud ERP systems. We also identified critical gaps in current research, such as the inconclusiveness of findings related to security critical issues, usability critical issues, and vendor critical issues, by highlighting the most important drivers influencing those issues in cloud ERP adoption and the lack of discussion on the nature of the criticality of those CSFs. This research will aid in the development of new strategies or the revision of existing strategies and polices aimed at effectively integrating cloud ERP into cloud computing infrastructure. It will also allow cloud ERP suppliers to determine organisations' and business owners' expectations and implement appropriate tactics. A better understanding of the CSFs will narrow the field of failure and assist practitioners and managers in increasing their chances of success.
Biomedical engineering involves ideologies and problem-solving methods of engineering to biology and medicine. Malaria is a life-threatening illness, which has gained significant attention among researchers. Since the manual diagnosis of malaria in a clinical setting is tedious, automated tools based on computational intelligence (CI) tools have gained considerable interest. Though earlier studies were focused on the handcrafted features, the diagnostic accuracy can be boosted through deep learning (DL) methods. This study introduces a new Barnacles Mating Optimizer with Deep Transfer Learning Enabled Biomedical Malaria Parasite Detection and Classification (BMODTL-BMPC) model. The presented BMODTL-BMPC model involves the design of intelligent models for the recognition and classification of malaria parasites. Initially, the Gaussian filtering (GF) approach is employed to eradicate noise in blood smear images. Then, Graph cuts (GC) segmentation technique is applied to determine the affected regions in the blood smear images. Moreover, the barnacles mating optimizer (BMO) algorithm with the NasNetLarge model is employed for the feature extraction process. Furthermore, the extreme learning machine (ELM) classification model is employed for the identification and classification of malaria parasites. To assure the enhanced outcomes of the BMODTL-BMPC technique, a wide-ranging experimentation analysis is performed using a benchmark dataset. The experimental results show that the BMODTL-BMPC technique outperforms other recent approaches.