The aim of this work was to investigate the microencapsulation efficiency (MEE) of different
grades of broken rice (RB) and breadfruit (BB)-based maltodextrin as a coating material,
using virgin coconut oil (VCO) as a model system. The VCO was generally found to be well
microencapsulated using BB, RB or commercial (COM) maltodextrin at a core/wall material
ratio of 1:3. In comparison to a different dextrose equivalent (DE) group, both RB and BB
maltodextrins with DE values of 10-14 showed higher MEE values (84.81-94.39%) than
maltodextrins with DE value of 15-19 (78.23-79.65%). Low DE value maltodextrins were
shown higher glass transition temperatures than high DE value maltodextrins under the same
moisture content. Both RB and BB maltodextrins were found to be compatible with COM
maltodextrin as shown in the microstructure appearance when viewed with a scanning electron
microscope (SEM).
Foodborne illness is recognized as an emerging infectious disease. The incidence of foodborne
infections is common and the majority cases are undiagnosed or unreported. Apart from some
diarrhea or minor gastrointestinal problem, some foodborne pathogenic microbes may cause
death, particularly to those people with weakened immune system. In this study, we have
developed a new fermented papaya beverage using symbiotic culture of yeast and acetic acid
bacteria under controlled biofermentation process. An in-vitro assessment of fermented papaya
beverage against few foodborne pathogenic microorganism was conducted to determine
its minimum bactericidal concentration (MBC>99). Three types of foodborne pathogen:
Escherichia coli O157, Salmonella enterica serovar Typhimurium ATCC 53648, Salmonella
enterica serovar Enteritidis (isolated from infectious chicken) were selected. From minimum
bactericidal concentration (MBC>99) assay, both fermented papaya pulp and leaves beverages
have shown 100% killing rate against three selected foodborne pathogenic microbes. Inversely,
non-fermented papaya pulp and leaves beverages indicated no inhibition at all. In fact, further
dilution of fermented papaya pulp and leaves beverages demonstrated different degree of
MBC>99 and brix value, but the pH value remained less than 3.5. These findings indicated
the combination of soluble solid compounds presents in both fermented papaya beverage and
product acidity play an important role in the inhibition of pathogenic microorganisms. The
preliminary promising results of this work have shown that the great potential of fermented
papaya beverages as a preventive measure to reduce the incidence of foodborne illness.
To study the wound healing efficacy of breadfruit starch hydrolysate, an in vitro wound scratch assay was conducted, in which the migration rate of wounded NIH 3T3 fibroblasts was determined. Wounds treated with lower dextrose equivalent (DE), (DE 10-14) starch hydrolysate were found capable to improve the wound healing of NIH 3T3 fibroblast cell with the percentage of wound closure improvement of 77%, respectively when compared with higher DE range (DE 15-19 and DE 20-24). The findings obtained in the BrdU uptake and MTT viability assays confirmed the wound healing properties of breadfruit starch hydrolysate as the starch hydrolysate-treated wounded NIH 3T3 fibroblasts were able to proliferate well and no cytotoxicity was observed. Together, these findings indicated that the newly developed breadfruit starch hydrolysate performed better than commercial (COM) starch hydrolysate of the same DE ranges. In conclusion, breadfruit starch hydrolysate had better functional properties than did starch hydrolysates derived from other sources and that they could play a beneficial role in wound healing applications.