Displaying all 2 publications

Abstract:
Sort:
  1. Zahuri AA, Wan Mohtar WHM, Hanafiah ZM, Abdul Patah MF, Show PL, Gafforov Y, et al.
    Mol Biotechnol, 2024 Jan 29.
    PMID: 38286973 DOI: 10.1007/s12033-023-01035-z
    In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 101 CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water.
  2. Mooralitharan S, Hanafiah ZM, Manan TSBA, Hasan HA, Jensen HS, Wan-Mohtar WAAQI, et al.
    PMID: 33624249 DOI: 10.1007/s11356-021-12686-3
    The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the nonhazardous properties and high degradation performance of WSGL, this research aims to optimize mycoremediation treatment design for chemical oxygen demand (COD) and ammonia nitrogen (AN) removal in domestic wastewater based on proposed Model 1 (temperature and treatment time) and Model 2 (volume of pellet and treatment time) via response surface methodology (RSM). Combined process variables were temperature (0C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD), and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of sum of squares equal to 9494.91 (Model 1-COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD), and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimized temperature for Model 1 was at 25 °C within 24 h of treatment time with 95.1% COD and 96.3% AN removals. The optimized condition (temperature) in Model 1 was further studied in Model 2. The optimized volume of pellet for Model 2 was 0.25% in 24-h treatment time with 76.0% COD and 78.4% AN removals. Overall, the ascended sequence of high volume of pellet considered in Model 2 will slow down the degradation process. The best fit volume of pellet with maximum degradation of COD and AN is equivalent to 0.1% at 25 °C in 24 h. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links