The data in this article provide information on spectroscopic and theoretical data for p-chlorocalix[4]arene when combined with selected drugs, such as paracetamol, ibuprofen, and cetirizine. The present spectroscopic data are generated from Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR and 13C NMR), and Ultraviolet-Visible spectroscopy (UV-Vis) as the key tools for molecular characterization. The measurement of the optimization energy, interaction energy, and the band gap energy between the molecules was calculated by Gaussian 09 software. It is interesting to note that of the three titled drugs identified, p-chlorocalix[4]arene showed the highest interaction energy with paracetamol, followed by ibuprofen and cetirizine.
This paper provided spectroscopic data that is relevant with research article entitled "Synthesis and structural characterization of 6-(N-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester Isomer" (Kadir et al., 2017) [1]. From the reported study, four new ligand of monoamide isomers were successfully synthesized using acyl chloride methods. The monoamide compounds namely 6-(3-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L1), 6-(4-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L2), 6-(5-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L3) and 6-(6-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L4) were fully characterized by Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1H NMR) and 13C Nuclear Magnetic Resonance (13C NMR), Ultraviolet Visible (UV-Vis) and elemental analyzer (CHNS).
This paper provided comprehensive data on spectroscopic and antibacterial activities of thioureido compounds which are relevant with research article entitled "Synthesis, Spectroscopic Studies and Antibacterial Activity of New Lauroyl Thiourea Amino Acid Derivatives" [1]. Based on the reported study, four new thioureido derivatives, namely 3-(3-dodecanoyl-thioureido)propionic acid (R1), 2-(3-dodecanoyl-thioureido)-3-methyl butyric acid (R2), (3-dodecanoyl-thioureido)acetic acid (R3) and 2-(3-dodecanoyl-thioureido)-3-phenyl propionic acid (R4) were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1H NMR) and 13C Nuclear Magnetic Resonance (13C NMR), and Ultraviolet Visible spectroscopy (UV-Vis). The preliminary results from antibacterial assay which were tested against Gram-positive bacteria such as Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus and Gram-negative bacteria such as Escherichia coli, Salmonella typhimurium are also described.
This paper provided the dataset obtained from spectroscopic, crystallography and DFT of a new compound namely 1,2-bis[N,N'-6-(4-pyridylmethylamido)pyridyl-2-carboxyamido]butane. This compound is prepared from the reaction between N-6-[(4-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid methyl ester with butane-1,4-diamine. The preparation of this compound is modified from the method described in our article [1]. In this work, we present data characterization of 1,2-bis[N,N'-6-(4-pyridylmethylamido)pyridyl-2-carboxyamido]butane from Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1 H NMR), NOESY NMR, 13C Nuclear Magnetic Resonance (13C NMR), and elemental analysis (CHNS). The structure of this molecule is also analysed by X-ray crystallography and DFT studies. A single-crystal X-ray diffraction investigation was carried out by using Bruker SMART Apex II Duo CCD area-detector diffractometers with MoKα radiation (wavelength of λ = 0.71073 Å). The optimized energy was indicated with GaussView 5.0 and Gaussian 16 software package programme.