Displaying all 4 publications

Abstract:
Sort:
  1. Harun, S.W., Sulaiman, A.H., Ahmad, H.
    ASM Science Journal, 2009;3(1):27-30.
    MyJurnal
    We demonstrate a multi-wavelength light source using a semiconductor optical amplifier (SOA) in conjunction with an array waveguide grating (AWG). The experimental results showed more than 20 channels with a wavelength separation of 0.8 nm and an optical signal-to-noise ratio of more than 10 dB under room temperature. The channels operated at the wavelength region from 1530.4 nm to 1548.6 nm, which corresponded to AWG filtering wavelengths with SOA drive current of 350 mA. The proposed light source had the advantages of a simple and compact structure, multi-wavelength operation and the system could be upgraded to generate more wavelengths.
  2. Muhd-Yassin, S.Z., Harun, S.W., Ahmad, H., Abd-Rahman, M.K.
    ASM Science Journal, 2008;2(2):163-168.
    MyJurnal
    An efficient erbium/ytterbium co-doped fibre amplifier was demonstrated by using a dual-stage partial doublepass structure with a band-pass filter (BPF). The amplifier achieved the maximum small signal gain of 56 dB and the corresponding noise figure of 4.66 dB at 1536 nm with an input signal power and total pump power of –50 dBm and 140 mW, respectively. Compared with a conventional single-stage amplifier, the maximum gain enhancement of 16.99 dB was obtained at 1544 nm with the corresponding noise figure was improved by 2 dB. The proposed amplifier structure only used a single pump source with a partial double pass scheme to provide a high gain and dual-stage structure to provide the low noise figure.
  3. Harun, S.W., Tamjis, M.R., Muhd-Yassin, S.Z., Abd-Rahman, M.K., Ahmad, H.
    ASM Science Journal, 2007;1(2):129-133.
    MyJurnal
    This paper demonstrates an erbium/ytterbium co-doped fi bre amplifi er (EYDFA) which used a pumping wavelength of 1058 nm, whereby the amplifi cation was assisted by the energy transfer between Yb and Er ions. The energy transfer increased the erbium doping concentration limit that was imposed by concentration quenching in erbium-doped fi bre. The optimum length was obtained at 4m~6m for erbium/ytterbium co-doped fi bre with Er ion concentration of 1000 p.p.m. This enabled the development of a compact amplifi er with a shorter gain medium compared to erbium-doped fi bre amplifi ers which use a gain medium of up to 15 m. A 1058 nm pumping wave-length was used for the EYDFA, as 1480 nm pumping resulted in severely degraded gain and noise fi gures because the energy transfer could not be achieved. The use of the optical isolator improved the small signal gain and noise fi gure by about 4.8 dB and 1.6 dB, respectively. Without the isolator, gain saturation and a noise fi gure penalty were observed due to the oscillating laser which was created at around 1534 nm by spurious refl ection. This showed that the usage of optical isolators was an important aspect to consider when designing an EYDFA.
  4. Harun, S.W., Hofmann, P., Schulzgen, A., Li, L., Peyghambarian, N., Ahmad, H.
    ASM Science Journal, 2008;2(2):149-152.
    MyJurnal
    A distributed feedback fibre laser made of highly Er-Yb co-doped phosphate glass fibre was demonstrated experimentally. The 45 mm long fibre laser device operated at 1540 nm with more than 50 dB side mode suppression ratio. However, the output power was still relatively lower due to un-optimized grating structure and thermal management.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links