The use of N fertilizers on tropical acid soils is increasing because of their low native fertility. Chicken litter biochar was used to improve N use efficiency and rice yield. The objective of this study was to determine the effects of chicken litter biochar on selected chemical properties of a tropical acid soil under rice (MR219) cultivation. Treatments evaluated were in this study were as follows: (1) T1, soil only, (2) T2, existing recommended fertilization, (3) T3, chicken litter biochar alone, and (4) T4, chicken litter biochar + existing recommended fertilization. Plant and soil analyses were conducted using standard procedures. The use of chicken litter biochar increased soil pH, total carbon, total P, available P, total N, and exchangeable N. Also, this practice decreased soil total acidity and exchangeable Al3+. Compared with T2, T4 significantly increased Crop Recovery Efficiency and Agronomic Recovery Efficiency of N. This resulted in a significant increase in the grain yield (11 t ha-1) of MR219 (Malaysia hybrid rice) for T4 compared with the existing rice grain yield of 5.9 t ha-1 (T2). Moreover, application of chicken litter biochar (5 t ha-1) to tropical acid soil suggested that N application can be reduced to 26.67%, 30.03%, 30.15%, and 14.15% of the recommended rates by MADA on days 10, 30, 50, and 70 after transplanting, respectively. Chicken litter biochar can improve the chemical properties of tropical acid soils and rice (MR219) grain yield.
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.