METHODS: Two types of phantoms were developed: phantoms A and B. Phantom A was made from a base material consisting of polyvinyl chloride-plastisol with the addition of glycerol, whereas phantom B consisted of polyvinyl chloride-plastisol with the addition of graphite. Each phantom had a stiff and soft lesion shaped like a sphere, with a diameter of 1.4 cm. The phantoms were cuboids with dimensions of 10 × 10 cm2 and a thickness of 5 cm. A series of phantom evaluations was performed, consisting of density, elasticity, acoustic properties, B-mode ultrasound images, and strain ratio.
RESULTS: The characterisation results show that background A closely resembles fibroglandular tissue in terms of density and acoustic properties (<5% variation); background B only resembles fibroglandular tissue in terms of density (-1.8% variation). In terms of elasticity, both backgrounds were close to the minimum value of fibroglandular tissue elasticity. The soft lesion on the phantom had a slightly lower density and elasticity than the carcinoma, whereas its acoustic properties (speed of sound and attenuation coefficient) were slightly higher than those of the reference carcinoma. Both phantoms were consistent with the literature in terms of strain ratio, geometric accuracy, lesion detection, and mean pixel value and showed good potential stability over one year.
CONCLUSION: This study successfully described the fabrication and evaluation sequence of a phantom equivalent to breast fibroglandular tissue and its evaluation via ultrasound imaging.
IMPLICATIONS FOR PRACTICE: This study offers proprietary information essential for the fabrication of phantoms that can be used for quality assurance and control in ultrasound imaging.