Displaying all 4 publications

Abstract:
Sort:
  1. Matthews PJ, Hossain MA, Sookchaloem D, Nguyen VD, Wong SY, Joling J, et al.
    Ecol Evol, 2024 Aug;14(8):e70082.
    PMID: 39206463 DOI: 10.1002/ece3.70082
    Complete chloroplast genomes of 17 samples from six species of Colocasia (Araceae) were sequenced, assembled, and aligned together with two previously reported complete genome sequences from taro (Colocasia esculenta). Analysis provides a well-supported phylogenetic tree for taro and closely-related wild Colocasia species in Southeast Asia. Two chloroplast lineages (CI and CII) form a well-defined haplotype group and are found in cultivated taros known as var. esculenta (dasheen, CI), var. antiquorum (eddoe, CII), and in a widespread, commensal wild form known as var. aquatilis (CI). A third lineage (CIII) is also found in wild taros known as var. aquatilis and in the wild species C. lihengiae, C. formosana, and C. spongifolia. We suggest three different scenarios to explain the grouping of CIII wild taros (C. esculenta) with other wild Colocasia species. Chloroplast lineages CI and CIII in C. esculenta and an unknown parent species may be involved in an as yet undated history of hybridization, chloroplast capture, and range extension. Substantial taxonomic revision may be needed for C. esculenta after further studies of morphological and genetic diversity within the crop, in wild populations, and in closely related wild species. The results also point to the Bengal delta as a region of key interest for future research on the origins of tropical wetland taros.
  2. Clements JD, Connell ND, Dirks C, El-Faham M, Hay A, Heitman E, et al.
    CBE Life Sci Educ, 2013;12(4):596-603.
    PMID: 24297287 DOI: 10.1187/cbe.13-09-0184
    Numerous studies are demonstrating that engaging undergraduate students in original research can improve their achievement in the science, technology, engineering, and mathematics (STEM) fields and increase the likelihood that some of them will decide to pursue careers in these disciplines. Associated with this increased prominence of research in the undergraduate curriculum are greater expectations from funders, colleges, and universities that faculty mentors will help those students, along with their graduate students and postdoctoral fellows, develop an understanding and sense of personal and collective obligation for responsible conduct of science (RCS). This Feature describes an ongoing National Research Council (NRC) project and a recent report about educating faculty members in culturally diverse settings (Middle East/North Africa and Asia) to employ active-learning strategies to engage their students and colleagues deeply in issues related to RCS. The NRC report describes the first phase of this project, which took place in Aqaba and Amman, Jordan, in September 2012 and April 2013, respectively. Here we highlight the findings from that report and our subsequent experience with a similar interactive institute in Kuala Lumpur, Malaysia. Our work provides insights and perspectives for faculty members in the United States as they engage undergraduate and graduate students, as well as postdoctoral fellows, to help them better understand the intricacies of and connections among various components of RCS. Further, our experiences can provide insights for those who may wish to establish "train-the-trainer" programs at their home institutions.
  3. Haigh AL, Gibernau M, Maurin O, Bailey P, Carlsen MM, Hay A, et al.
    Am J Bot, 2023 Feb;110(2):e16117.
    PMID: 36480380 DOI: 10.1002/ajb2.16117
    PREMISE: Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual-flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long-debated evolutionary transition between bisexual and unisexual flowers in the family.

    METHODS: Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set.

    RESULTS: The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea.

    CONCLUSIONS: Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here.

  4. Cámara-Leret R, Frodin DG, Adema F, Anderson C, Appelhans MS, Argent G, et al.
    Nature, 2020 08;584(7822):579-583.
    PMID: 32760001 DOI: 10.1038/s41586-020-2549-5
    New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links