Displaying all 2 publications

Abstract:
Sort:
  1. Helbert, Turjaman M, Nara K
    PLoS One, 2019;14(9):e0221998.
    PMID: 31498844 DOI: 10.1371/journal.pone.0221998
    In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.
  2. Dendooven A, Peetermans H, Helbert M, Nguyen TQ, Marcussen N, Nagata M, et al.
    BMC Nephrol, 2021 05 24;22(1):193.
    PMID: 34030637 DOI: 10.1186/s12882-021-02365-3
    BACKGROUND: Kidney biopsy registries all over the world benefit research, teaching and health policy. Comparison, aggregation and exchange of data is however greatly dependent on how registration and coding of kidney biopsy diagnoses are performed. This paper gives an overview over kidney biopsy registries, explores how these registries code kidney disease and identifies needs for improvement of coding practice.

    METHODS: A literature search was undertaken to identify biopsy registries for medical kidney diseases. These data were supplemented with information from personal contacts and from registry websites. A questionnaire was sent to all identified registries, investigating age of registries, scope, method of coding, possible mapping to international terminologies as well as self-reported problems and suggestions for improvement.

    RESULTS: Sixteen regional or national kidney biopsy registries were identified, of which 11 were older than 10 years. Most registries were located either in Europe (10/16) or in Asia (4/16). Registries most often use a proprietary coding system (12/16). Only a few of these coding systems were mapped to SNOMED CT (1), older SNOMED versions (2) or ERA-EDTA PRD (3). Lack of maintenance and updates of the coding system was the most commonly reported problem.

    CONCLUSIONS: There were large gaps in the global coverage of kidney biopsy registries. Limited use of international coding systems among existing registries hampers interoperability and exchange of data. The study underlines that the use of a common and uniform coding system is necessary to fully realize the potential of kidney biopsy registries.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links