Displaying all 3 publications

Abstract:
Sort:
  1. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

  2. Fornace KM, Brock PM, Abidin TR, Grignard L, Herman LS, Chua TH, et al.
    Lancet Planet Health, 2019 04;3(4):e179-e186.
    PMID: 31029229 DOI: 10.1016/S2542-5196(19)30045-2
    BACKGROUND: Land use changes disrupt ecosystems, altering the transmission of vector-borne diseases. These changes have been associated with increasing incidence of zoonotic malaria caused by Plasmodium knowlesi; however, the population-level distributions of infection and exposure remain unknown. We aimed to measure prevalence of serological exposure to P knowlesi and assess associated risk factors.

    METHODS: We did an environmentally stratified, population-based, cross-sectional survey across households in the Kudat, Kota Marudu, Pitas, and Ranau districts in northern Sabah, Malaysia, encompassing a range of ecologies. Using blood samples, the transmission intensity of P knowlesi and other malaria species was measured by specific antibody prevalence and infection detected using molecular methods. Proportions and configurations of land types were extracted from maps derived from satellite images; a data-mining approach was used to select variables. A Bayesian hierarchical model for P knowlesi seropositivity was developed, incorporating questionnaire data about individual and household-level risk factors with selected landscape factors.

    FINDINGS: Between Sept 17, 2015, and Dec 12, 2015, 10 100 individuals with a median age of 25 years (range 3 months to 105 years) were sampled from 2849 households in 180 villages. 5·1% (95% CI 4·8-5·4) were seropositive for P knowlesi, and marked historical decreases were observed in the transmission of Plasmodium falciparum and Plasmodium vivax. Nine Plasmodium spp infections were detected. Age, male sex, contact with macaques, forest use, and raised house construction were positively associated with P knowlesi exposure, whereas residing at higher geographical elevations and use of insecticide were protective. Agricultural and forest variables, such as proportions and fragmentation of land cover types, predicted exposure at different spatial scales from households.

    INTERPRETATION: Although few infections were detected, P knowlesi exposure was observed in all demographic groups and was associated with occupational factors. Results suggest that agricultural expansion and forest fragmentation affect P knowlesi exposure, supporting linkages between land use change and P knowlesi transmission.

    FUNDING: UK Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.

  3. Fornace KM, Herman LS, Abidin TR, Chua TH, Daim S, Lorenzo PJ, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006432.
    PMID: 29902171 DOI: 10.1371/journal.pntd.0006432
    BACKGROUND: Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is now the main cause of human malaria within Malaysian Borneo. While data is increasingly available on symptomatic cases, little is known about community-level patterns of exposure and infection. Understanding the true burden of disease and associated risk factors within endemic communities is critical for informing evidence-based control measures.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted comprehensive surveys in three areas where P. knowlesi transmission is reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan, Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were detected in 7.1% (95% CI: 6.2-8.2%) of the population, compared with 16.1% (14.6-17.7%) and 12.6% (11.2-14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individuals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of non-zoonotic malaria species. Results indicated marked heterogeneity in transmission intensity between sites and P. knowlesi exposure was associated with agricultural work (OR 1.63; 95% CI 1.07-2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29-4.46) and clearing (OR 2.14; 95% CI 1.35-3.40) around houses. Spatial patterns of P. knowlesi exposure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals were younger on average than individuals exposed to non-zoonotic malaria.

    CONCLUSIONS/SIGNIFICANCE: This is the first study to describe serological exposure to P. knowlesi and associated risk factors within endemic communities. Results indicate community-level patterns of infection and exposure differ markedly from demographics of reported cases, with higher levels of exposure among women and children. Further work is needed to understand these variations in risk across a wider population and spatial scale.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links