OBJECTIVES: To evaluate the relationship between plasma [FRA] and glucose concentration ([gluc]) as well as indices of energy balance during early lactation in dairy cattle, and to characterize the influence of plasma total protein concentration ([TP]) and albumin concentration ([albumin]) on [FRA].
ANIMALS: Convenience sample comprising 103 periparturient Holstein-Friesian cattle.
METHODS: Plasma [gluc], [TP], [albumin], and other clinicopathologic indices of energy status were determined periodically from Day 4 postpartum. Body condition score (BCS) was assessed, and backfat thickness (BFT) and longissimus dorsi muscle thickness (LDT) were measured ultrasonographically. Plasma [FRA] was measured at approximately 28 days postpartum. Associations between plasma [FRA] and study variables were evaluated using Spearman's rho and stepwise forward linear regression. Statistical significance was declared at P
MATERIALS AND METHODS: The experiments were performed on 24 (6 × 4 groups) adult female SD rats aged 12 weeks old. G1 was the control group and received a normal diet with normal saline. However, on pregnancy days 3 (Pd3) and 4 (Pd4), G2, G3, and G4 were given normal saline and subcutaneously administered IMC twice daily at different doses of 4.33, 4.66 and 5.00 mg/kg body weight, respectively. The rats were euthanized on day 8 of pregnancy (Pd8). The uterus was excised and examined for signs of pregnancy, followed by tissue samples from liver, kidney, and ovary (for histomorphological examination using haematoxylin and eosin stain).
RESULTS: All IMC treatment doses disrupted the implantation process and caused a significant reduction in embryo development. Analysis for histopathological changes revealed that IMC doses above 4.33 mg/kg body weight caused more adverse reproductive health effects in rats. Vasoconstriction and micro vascularization were detected in the liver, while degenerative Bowman's capsules and inflammatory cells were observed in kidney sections from IMC-treated rats.
CONCLUSION: IMC therapy interfered with implantation and embryo development in rats, resulting in significant uterine vasoconstriction and atrophy, 4.33 mg/kg bwt dose appeared to be optimum to establish embryo implantation dysfunction in SD rats.