Displaying all 4 publications

Abstract:
Sort:
  1. Knox SH, Bansal S, McNicol G, Schafer K, Sturtevant C, Ueyama M, et al.
    Glob Chang Biol, 2021 08;27(15):3582-3604.
    PMID: 33914985 DOI: 10.1111/gcb.15661
    While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
  2. Chang KY, Riley WJ, Knox SH, Jackson RB, McNicol G, Poulter B, et al.
    Nat Commun, 2021 Apr 15;12(1):2266.
    PMID: 33859182 DOI: 10.1038/s41467-021-22452-1
    Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  3. Abootalebi S, Aertker BM, Andalibi MS, Asdaghi N, Aykac O, Azarpazhooh MR, et al.
    J Stroke Cerebrovasc Dis, 2020 Sep;29(9):104938.
    PMID: 32807412 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104938
    BACKGROUND AND PURPOSE: The novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), now named coronavirus disease 2019 (COVID-19), may change the risk of stroke through an enhanced systemic inflammatory response, hypercoagulable state, and endothelial damage in the cerebrovascular system. Moreover, due to the current pandemic, some countries have prioritized health resources towards COVID-19 management, making it more challenging to appropriately care for other potentially disabling and fatal diseases such as stroke. The aim of this study is to identify and describe changes in stroke epidemiological trends before, during, and after the COVID-19 pandemic.

    METHODS: This is an international, multicenter, hospital-based study on stroke incidence and outcomes during the COVID-19 pandemic. We will describe patterns in stroke management, stroke hospitalization rate, and stroke severity, subtype (ischemic/hemorrhagic), and outcomes (including in-hospital mortality) in 2020 during COVID-19 pandemic, comparing them with the corresponding data from 2018 and 2019, and subsequently 2021. We will also use an interrupted time series (ITS) analysis to assess the change in stroke hospitalization rates before, during, and after COVID-19, in each participating center.

    CONCLUSION: The proposed study will potentially enable us to better understand the changes in stroke care protocols, differential hospitalization rate, and severity of stroke, as it pertains to the COVID-19 pandemic. Ultimately, this will help guide clinical-based policies surrounding COVID-19 and other similar global pandemics to ensure that management of cerebrovascular comorbidity is appropriately prioritized during the global crisis. It will also guide public health guidelines for at-risk populations to reduce risks of complications from such comorbidities.

  4. Wijedasa LS, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, et al.
    Glob Chang Biol, 2017 03;23(3):977-982.
    PMID: 27670948 DOI: 10.1111/gcb.13516
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links