Displaying all 2 publications

Abstract:
Sort:
  1. Tang PL, Hong WL, Yue CS, Harun S
    Bioresour Technol, 2020 Oct;314:123723.
    PMID: 32599527 DOI: 10.1016/j.biortech.2020.123723
    Pretreatment is an essential upstream process to deconstruct oil palm empty fruit bunch fiber (OPEFBF) prior to sugars production. This study aimed to investigate the efficiency of OPEFBF pretreatment using palm oil mill effluent (POME) as solvent. The effect of alkali catalyst (5%w/w NaOH and ammonia), temperature (90,120,135 °C) and time (60,120,180 min) on the efficiency of pretreatment (OPEFBF-to-solvent ratio of 1:25) was also investigated. The results indicated that POME-pretreatment (135 °C, 180 min) enhanced glucose yield by only ~56%. Glucose production was increased about 5.8-fold to 495.3 ± 5.9 mg g-1 OPEFBF when NaOH was added in POME-pretreatment (Na-P). The xylose production from OPEFBF was increased about 3.7-fold after ammonia-catalyzed POME-pretreatment. About 12.1 ± 0.2 g L-1 of ethanol was produced from Na-P-hydrolysate at molar conversion of 59.4 ± 1.4%. This research provides new insight into the use of POME as a cost-effective pretreatment solvent of OPEFBF to reduce upstream process cost by cutting down water usage.
  2. Torres ME, Cox T, Hong WL, McManus J, Sample JC, Destrigneville C, et al.
    Geobiology, 2015 Nov;13(6):562-80.
    PMID: 26081483 DOI: 10.1111/gbi.12146
    We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links