Displaying all 3 publications

Abstract:
Sort:
  1. Duncan MT, Horvath SM
    PMID: 3396569
    Young sedentary adult males of Malay, Indian, and Chinese origin who had established continuous residence in tropical Malaysia and presumed to be naturally acclimatized to heat, were studied to evaluate their physiological responses to a standard heat stress test. The Malay and Indian races have evolved in hot and humid geographical zones, whereas the Chinese originated from a temperate area. Subjects exercised at 50% VO2max alternating 18 minutes walking and 2 min rest during a 2-h exposure to an ambient of 34.9 degrees C dry bulb and 32.1 degrees C wet bulb. Heart rates, core and skin temperatures, sweat rates, and oxygen uptakes were measured during the heat exposure. The subjects of Malay origin exhibited the least circulatory stress of the three ethnic groups. The data obtained on these long-term residents of a hot-wet climate and who were considered acclimatized to this environment were compared to experimental data obtained by other investigators and other ethnic groups.
  2. Duncan MT, Horvath SM
    Singapore Med J, 1988 Aug;29(4):322-6.
    PMID: 3249956
    Cardiorespiratory adjustments to maximal treadmill exercise were studied in young untrained Malaysia men representative of the three major ethnic groups in Malaysia and Singapore. Maximal values for oxygen uptake and cardiac performance were essentially similar In the three groups and were comparable to those reported for other populations.
  3. Morales Berstein F, McCartney DL, Lu AT, Tsilidis KK, Bouras E, Haycock P, et al.
    Elife, 2022 Mar 29;11.
    PMID: 35346416 DOI: 10.7554/eLife.75374
    BACKGROUND: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker.

    METHODS: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach.

    RESULTS: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers.

    CONCLUSIONS: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results.

    FUNDING: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links