Displaying all 4 publications

Abstract:
Sort:
  1. Moyle RG, Manthey JD, Hosner PA, Rahman M, Lakim M, Sheldon FH
    PeerJ, 2017;5:e3335.
    PMID: 28533979 DOI: 10.7717/peerj.3335
    Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.
  2. Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, et al.
    Nature, 2024 Apr 01.
    PMID: 38560995 DOI: 10.1038/s41586-024-07323-1
    Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
  3. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2021 Apr;592(7856):E24.
    PMID: 33833441 DOI: 10.1038/s41586-021-03473-8
  4. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2020 Nov;587(7833):252-257.
    PMID: 33177665 DOI: 10.1038/s41586-020-2873-9
    Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links