Toxoplasma gondii is an obligate intracellular protozoon which causes toxoplasmosis, an important zoonotic disease that is endemic worldwide. Common sources of T. gondii infection in humans are food or water contaminated with oocysts and raw or undercooked meat with cysts. In animals, common sources of infection include feed, water, or litter contaminated with oocysts. The diagnosis and molecular characterization of T. gondii infection in humans and animals is crucial due to public and veterinary health importance. Various traditional and serological methods have been used in clinical practice for toxoplasmosis diagnosis, but interpreting the results remains a challenge. Several molecular techniques have also been used for the detection and genetic characterization of T. gondii , but primarily in research settings. In this paper, we review the techniques that are currently used for the diagnosis and genetic characterization of T. gondii in humans and animals, along with their advantages and disadvantages. The techniques reviewed have laid the groundwork for the future development of more effective and precise detection and characterization of T. gondii . These advances will contribute to a better understanding of epidemiology, prevention and control of toxoplasmosis. Thus, this review would be of particular interest to clinical physicians, veterinarians and researchers.
Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.