Displaying all 2 publications

Abstract:
Sort:
  1. Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S
    Chemosphere, 2023 Oct;339:139647.
    PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647
    Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
  2. Chahban M, Akodad M, Skalli A, Gueddari H, El Yousfi Y, Ait Hmeid H, et al.
    Environ Res, 2024 Mar 01;244:117939.
    PMID: 38128604 DOI: 10.1016/j.envres.2023.117939
    The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links