Displaying all 3 publications

Abstract:
Sort:
  1. Hussein AF, Hashim SJ, Rokhani FZ, Wan Adnan WA
    Sensors (Basel), 2021 Mar 26;21(7).
    PMID: 33810211 DOI: 10.3390/s21072311
    Cardiovascular Disease (CVD) is a primary cause of heart problems such as angina and myocardial ischemia. The detection of the stage of CVD is vital for the prevention of medical complications related to the heart, as they can lead to heart muscle death (known as myocardial infarction). The electrocardiogram (ECG) reflects these cardiac condition changes as electrical signals. However, an accurate interpretation of these waveforms still calls for the expertise of an experienced cardiologist. Several algorithms have been developed to overcome issues in this area. In this study, a new scheme for myocardial ischemia detection with multi-lead long-interval ECG is proposed. This scheme involves an observation of the changes in ischemic-related ECG components (ST segment and PR segment) by way of the Choi-Williams time-frequency distribution to extract ST and PR features. These extracted features are mapped to a multi-class SVM classifier for training in the detection of unknown conditions to determine if they are normal or ischemic. The use of multi-lead ECG for classification and 1 min intervals instead of beats or frames contributes to improved detection performance. The classification process uses the data of 92 normal and 266 patients from four different databases. The proposed scheme delivered an overall result with 99.09% accuracy, 99.49% sensitivity, and 98.44% specificity. The high degree of classification accuracy for the different and unknown data sources used in this study reflects the flexibility, validity, and reliability of this proposed scheme. Additionally, this scheme can assist cardiologists in detecting signal abnormality with robustness and precision, and can even be used for home screening systems to provide rapid evaluation in emergency cases.
  2. Al-Hiyali MI, Yahya N, Faye I, Hussein AF
    Sensors (Basel), 2021 Aug 04;21(16).
    PMID: 34450699 DOI: 10.3390/s21165256
    The functional connectivity (FC) patterns of resting-state functional magnetic resonance imaging (rs-fMRI) play an essential role in the development of autism spectrum disorders (ASD) classification models. There are available methods in literature that have used FC patterns as inputs for binary classification models, but the results barely reach an accuracy of 80%. Additionally, the generalizability across multiple sites of the models has not been investigated. Due to the lack of ASD subtypes identification model, the multi-class classification is proposed in the present study. This study aims to develop automated identification of autism spectrum disorder (ASD) subtypes using convolutional neural networks (CNN) using dynamic FC as its inputs. The rs-fMRI dataset used in this study consists of 144 individuals from 8 independent sites, labeled based on three ASD subtypes, namely autistic disorder (ASD), Asperger's disorder (APD), and pervasive developmental disorder not otherwise specified (PDD-NOS). The blood-oxygen-level-dependent (BOLD) signals from 116 brain nodes of automated anatomical labeling (AAL) atlas are used, where the top-ranked node is determined based on one-way analysis of variance (ANOVA) of the power spectral density (PSD) values. Based on the statistical analysis of the PSD values of 3-level ASD and normal control (NC), putamen_R is obtained as the top-ranked node and used for the wavelet coherence computation. With good resolution in time and frequency domain, scalograms of wavelet coherence between the top-ranked node and the rest of the nodes are used as dynamic FC feature input to the convolutional neural networks (CNN). The dynamic FC patterns of wavelet coherence scalogram represent phase synchronization between the pairs of BOLD signals. Classification algorithms are developed using CNN and the wavelet coherence scalograms for binary and multi-class identification were trained and tested using cross-validation and leave-one-out techniques. Results of binary classification (ASD vs. NC) and multi-class classification (ASD vs. APD vs. PDD-NOS vs. NC) yielded, respectively, 89.8% accuracy and 82.1% macro-average accuracy, respectively. Findings from this study have illustrated the good potential of wavelet coherence technique in representing dynamic FC between brain nodes and open possibilities for its application in computer aided diagnosis of other neuropsychiatric disorders, such as depression or schizophrenia.
  3. Hussein AF, Hashim SJ, Aziz AFA, Rokhani FZ, Adnan WAW
    J Med Syst, 2017 Nov 29;42(1):15.
    PMID: 29188389 DOI: 10.1007/s10916-017-0871-8
    The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links