Displaying all 4 publications

Abstract:
Sort:
  1. Ibrahim CO
    Bioresour Technol, 2008 Jul;99(11):4572-82.
    PMID: 18164196 DOI: 10.1016/j.biortech.2007.07.040
    Malaysian enzyme industry is considered almost non-existence, although the import volume is large. Realizing the importance of enzymes, encompassing a wide range of applications in bioindustry, the development of home grown technologies for enzyme production and applications becomes one of the national priorities in industrial biotechnology. Enzyme production from indigenous microbial isolates was performed either by submerged or solid state fermentation processes. Based on its wide and unique spectrum of properties, enzymes have been developed for wide applications in various industrial processes. The development of the enzyme catalysed applications is based on the modification of the reaction systems to enhance their catalytic activities. Some of the applications of the industrial enzymes include the fine chemicals production, oleochemicals modification, detergent formulation, enzymatic drinking of waste papers, animal feed formulation and effluent treatment processes. Enzymes have also shown to be successfully used as analytical tool in the determination of compounds in body fluids. Although, most of these enzyme catalysed reactions were performed in aqueous phase, the use of enzymes in organic solvents was found to be significant for the production of new chemicals.
  2. Darah I, Ibrahim CO
    Folia Microbiol (Praha), 1998;43(2):161-8.
    PMID: 18470488 DOI: 10.1007/BF02816503
    The production of lignin-degrading enzymes by free and entrapped cells ofPhanerochoete chrysosporium in a tubular air-lift bioreactor was studied. Under optimized cultural conditions the production of lignin peroxidase by free cells, calcium-alginate-entrapped cells and scouring-mesh-entrapped cells was in a ratio of 520ratio720ratio950 mU/mL, while the production of manganese peroxidase was in a ratio of 350ratio480ratio620 mU/mL. The stability of the entrapped cells by fed-batch systems was highest after 3 feeding experiments which is similarly demonstrated in the repeated use of the preparations in batch system.
  3. Lee CK, Darah I, Ibrahim CO
    Biotechnol Res Int, 2011;2011:658493.
    PMID: 21350665 DOI: 10.4061/2011/658493
    Novel design solid state bioreactor, FERMSOSTAT, had been evaluated in cellulase production studies using local isolate Aspergillus niger USM AI 1 grown on sugarcane bagasse and palm kernel cake at 1 : 1 (w/w) ratio. Under optimised SSF conditions of 0.5 kg substrate; 70% (w/w) moisture content; 30°C; aeration at 4 L/h · g fermented substrate for 5 min and mixing at 0.5 rpm for 5 min, about 3.4 U/g of Filter paper activity (FPase) was obtained. At the same time, comparative studies of the enzymes production under the same SSF conditions indicated that FPase produced by A. niger USM AI 1 was about 35.3% higher compared to Trichoderma reesei. This shows that the performance of this newly designed SSF bioreactor is acceptable and potentially used as prototype for larger-scale bioreactor design.
  4. Lee CK, Darah I, Ibrahim CO
    Bioresour Technol, 2007 May;98(8):1684-9.
    PMID: 17137782
    The protocol for the enzymatic deinking of laser printed waste papers on a laboratory scale using cellulase (C) and hemicellulase (H) of Aspergillus niger (Amano) was developed as an effective method for paper recycling. A maximum deinking efficiency of almost 73% by the enzyme combination of C:H was obtained using the deinking conditions of pulping consistency of 1.0% (w/v) with the pulping time of 1.0min, temperature of 50 degrees C, pH=3.5, agitation rate of 60rpm, pulp concentration of 4% (w/v), concentration of each enzyme of 2.5U/g air dried pulp and the enzyme ratio of 1:1. The deinking efficiency was further enhanced to 95% using the optimized flotation system consisting of pH=6.0, Tween 80 of concentration 0.5% (w/w), working air flow rate of 10.0L/min and temperature of 45 degrees C. The deinked papers were found to exhibit properties comparable to the commercial papers suggesting the effectiveness of the enzymatic process developed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links