METHODS: MiRNA profiling was conducted on plasma samples from 18 patients with primary aldosteronism taken during adrenal venous sampling on an Illumina MiSeq platform. Bioinformatics and machine learning identified 9 miRNAs for validation by reverse transcription real-time quantitative polymerase chain reaction. Validation was performed on a cohort consisting of 108 patients with known subdifferentiation. A 30-patient subset of the validation cohort involved both adrenal venous sampling and peripheral, the rest only peripheral samples. A neural network model was used for feature selection and comparison between adrenal venous sampling and peripheral samples, while a deep-learning model was used for classification.
RESULTS: Our model identified 10 miRNA combinations achieving >85% accuracy in distinguishing unilateral primary aldosteronism and bilateral adrenal hyperplasia on a 30-sample subset, while also confirming the suitability of peripheral samples for analysis. The best model, involving 6 miRNAs, achieved an area under curve of 87.1%. Deep learning resulted in 100% accuracy on the subset and 90.9% sensitivity and 81.8% specificity on all 108 samples, with an area under curve of 86.7%.
CONCLUSIONS: Machine learning analysis of circulating miRNAs offers a minimally invasive alternative for primary aldosteronism lateralization. Early identification of bilateral adrenal hyperplasia could expedite treatment initiation without the need for further localization, benefiting both patients and health care providers.