Displaying all 17 publications

Abstract:
Sort:
  1. Zhou J, Shaikh LH, Neogi SG, McFarlane I, Zhao W, Figg N, et al.
    Hypertension, 2015 May;65(5):1103-10.
    PMID: 25776071 DOI: 10.1161/HYP.0000000000000025
    Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
  2. Lou Y, Fan L, Hou X, Dominiczak AF, Wang JG, Staessen JA, et al.
    Hypertension, 2019 11;74(5):1068-1074.
    PMID: 31564165 DOI: 10.1161/HYPERTENSIONAHA.119.13140
  3. Zhang ZY, Yang WY, Dominiczak AF, Wang JG, Wu Y, Almustafa B, et al.
    Hypertension, 2019 11;74(5):1064-1067.
    PMID: 31422692 DOI: 10.1161/HYPERTENSIONAHA.119.13206
  4. Eikendal AL, Groenewegen KA, Anderson TJ, Britton AR, Engström G, Evans GW, et al.
    Hypertension, 2015 Apr;65(4):707-13.
    PMID: 25624341 DOI: 10.1161/HYPERTENSIONAHA.114.04658
    Although atherosclerosis starts in early life, evidence on risk factors and atherosclerosis in individuals aged <45 years is scarce. Therefore, we studied the relationship between risk factors, common carotid intima-media thickness (CIMT), and first-time cardiovascular events in adults aged <45 years. Our study population consisted of 3067 adults aged <45 years free from symptomatic cardiovascular disease at baseline, derived from 6 cohorts that are part of the USE-IMT initiative, an individual participant data meta-analysis of general-population-based cohort studies evaluating CIMT measurements. Information on risk factors, CIMT measurements, and follow-up of the combined end point (first-time myocardial infarction or stroke) was obtained. We assessed the relationship between risk factors and CIMT and the relationship between CIMT and first-time myocardial infarction or stroke using a multivariable linear mixed-effects model and a Cox proportional-hazards model, respectively. During a follow-up of 16.3 years, 55 first-time myocardial infarctions or strokes occurred. Median CIMT was 0.63 mm. Of the risk factors under study, age, sex, diastolic blood pressure, body mass index, total cholesterol, and high-density lipoprotein cholesterol related to CIMT. Furthermore, CIMT related to first-time myocardial infarction or stroke with a hazard ratio of 1.40 per SD increase in CIMT, independent of risk factors (95% confidence interval, 1.11-1.76). CIMT may be a valuable marker for cardiovascular risk in adults aged <45 years who are not yet eligible for standard cardiovascular risk screening. This is especially relevant in those with an increased, unfavorable risk factor burden.
  5. Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ
    Hypertension, 2020 12;76(6):1674-1687.
    PMID: 33012206 DOI: 10.1161/HYPERTENSIONAHA.120.14473
    There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
  6. Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, et al.
    Hypertension, 2020 04;75(4):1045-1053.
    PMID: 32160100 DOI: 10.1161/HYPERTENSIONAHA.119.13821
    LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.
  7. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al.
    Hypertension, 2017 07;70(1):129-136.
    PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057
    Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
  8. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
  9. Tangren JS, Wan Md Adnan WAH, Powe CE, Ecker J, Bramham K, Hladunewich MA, et al.
    Hypertension, 2018 08;72(2):451-459.
    PMID: 29915020 DOI: 10.1161/HYPERTENSIONAHA.118.11161
    An episode of clinically recovered acute kidney injury (r-AKI) has been identified as a risk factor for future hypertension and cardiovascular disease. Our objective was to assess whether r-AKI was associated with future preeclampsia and other adverse pregnancy outcomes and to identify whether severity of AKI or time interval between AKI and pregnancy was associated with pregnancy complications. We conducted a retrospective cohort study of women who delivered infants between 1998 and 2016 at Massachusetts General Hospital. AKI was defined using the 2012 Kidney Disease Improving Global Outcomes laboratory criteria with subsequent clinical recovery (estimate glomerular filtration rate, >90 mL/min per 1.73 m2 before conception). AKI was further classified by severity (Kidney Disease Improving Global Outcomes stages 1-3) and time interval between AKI episode and the start of pregnancy. Women with r-AKI had an increased rate of preeclampsia compared with women without previous r-AKI (22% versus 9%; P<0.001). Infants of women with r-AKI were born earlier (gestational age, 38.2±3.0 versus 39.0±2.2 weeks; P<0.001) and were more likely to be small for gestational age (9% versus 5%; P=0.002). Increasing severity of r-AKI was associated with increased risk of preeclampsia for stages 2 and 3 AKI (adjusted odds ratio, 3.5; 95% confidence interval, 2.1-5.7 and adjusted odds ratio, 6.5; 95% confidence interval, 3.5-12.0, respectively), but not for stage 1 (adjusted odds ratio, 1.7; 95% confidence interval, 0.9-3.2). A history of AKI before pregnancy, despite apparent full recovery, was associated with increased risk of pregnancy complications. Severity and timing of the AKI episode modified the risk.
  10. Marques FZ, Jama HA, Tsyganov K, Gill PA, Rhys-Jones D, Muralitharan RR, et al.
    Hypertension, 2019 12;74(6):1279-1293.
    PMID: 31679421 DOI: 10.1161/HYPERTENSIONAHA.119.13079
    Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual's developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
  11. Zack R, Okunade O, Olson E, Salt M, Amodeo C, Anchala R, et al.
    Hypertension, 2019 05;73(5):990-997.
    PMID: 30929516 DOI: 10.1161/HYPERTENSIONAHA.118.11916
    High blood pressure is the leading modifiable risk factor for mortality, accounting for nearly 1 in 5 deaths worldwide and 1 in 11 in low-income countries. Hypertension control remains a challenge, especially in low-resource settings. One approach to improvement is the prioritization of patient-centered care. However, consensus on the outcomes that matter most to patients is lacking. We aimed to define a standard set of patient-centered outcomes for evaluating hypertension management in low- and middle-income countries. The International Consortium for Health Outcomes Measurement convened a Working Group of 18 experts and patients representing 15 countries. We used a modified Delphi process to reach consensus on a set of outcomes, case-mix variables, and a timeline to guide data collection. Literature reviews, patient interviews, a patient validation survey, and an open review by hypertension experts informed the set. The set contains 18 clinical and patient-reported outcomes that reflect patient priorities and evidence-based hypertension management and case-mix variables to allow comparisons between providers. The domains included are hypertension control, cardiovascular complications, health-related quality of life, financial burden of care, medication burden, satisfaction with care, health literacy, and health behaviors. We present a core list of outcomes for evaluating hypertension care. They account for the unique challenges healthcare providers and patients face in low- and middle-income countries, yet are relevant to all settings. We believe that it is a vital step toward international benchmarking in hypertension care and, ultimately, value-based hypertension management.
  12. Nakai M, Ribeiro RV, Stevens BR, Gill P, Muralitharan RR, Yiallourou S, et al.
    Hypertension, 2021 09;78(3):804-815.
    PMID: 34333988 DOI: 10.1161/HYPERTENSIONAHA.121.17288
    [Figure: see text].
  13. Haas AV, En Yee L, Yuan YE, Wong YH, Hopkins PN, Jeunemaitre X, et al.
    Hypertension, 2021 Dec;78(6):1809-1817.
    PMID: 34757767 DOI: 10.1161/HYPERTENSIONAHA.121.18033
    [Figure: see text].
  14. Kario K, Kim BK, Aoki J, Wong AY, Lee YH, Wongpraparut N, et al.
    Hypertension, 2020 Mar;75(3):590-602.
    PMID: 32008432 DOI: 10.1161/HYPERTENSIONAHA.119.13671
    The Asia Renal Denervation Consortium consensus conference of Asian physicians actively performing renal denervation (RDN) was recently convened to share up-to-date information and regional perspectives, with the goal of consensus on RDN in Asia. First- and second-generation trials of RDN have demonstrated the efficacy and safety of this treatment modality for lowering blood pressure in patients with resistant hypertension. Considering the ethnic differences of the hypertension profile and demographics of cardiovascular disease demonstrated in the SYMPLICITY HTN (Renal Denervation in Patients With Uncontrolled Hypertension)-Japan study and Global SYMPLICITY registry data from Korea and Taiwan, RDN might be an effective hypertension management strategy in Asia. Patient preference for device-based therapy should be considered as part of a shared patient-physician decision process. A practical population for RDN treatment could consist of Asian patients with uncontrolled essential hypertension, including resistant hypertension. Opportunities to refine the procedure, expand the therapy to other sympathetically mediated diseases, and explore the specific effects on nocturnal and morning hypertension offer a promising future for RDN. Based on available evidence, RDN should not be considered a therapy of last resort but as an initial therapy option that may be applied alone or as a complementary therapy to antihypertensive medication.
  15. Chapman N, Ching SM, Konradi AO, Nuyt AM, Khan T, Twumasi-Ankrah B, et al.
    Hypertension, 2023 Jun;80(6):1140-1149.
    PMID: 36919603 DOI: 10.1161/HYPERTENSIONAHA.122.20448
    Hypertension is the leading risk factor for cardiovascular disease and premature death among women globally. However, there is a fundamental lack of knowledge regarding the sex-specific pathophysiology of the condition. In addition, risk factors for hypertension and cardiovascular disease unique to women or female sex are insufficiently acknowledged in clinical guidelines. This review summarizes the existing evidence on women and female-specific risk factors and clinical management of hypertension, to identify critical knowledge gaps relevant to research, clinical practice, and women's heart health awareness. Female-specific risk factors relate not only to reproduction, such as the association of gynecological conditions, adverse pregnancy outcomes or menopause with hypertension, but also to the specific roles of women in society and science, such as gender differences in received medical care and the underrepresentation of women in both the science workforce and as participants in research, which contribute to the limited evidence-based, gender- or sex-specific recommendations. A key point is that the development of hypertension starts in young, premenopausal women, often in association with disorders of reproductive organs, and therefore needs to be managed early in life to prevent future cardiovascular disease. Considering the lower blood pressure levels at which cardiovascular disease occurs, thresholds for diagnosis and treatment of hypertension may need to be lower for women.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links