Affiliations 

  • 1 From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine-Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Czech Republic; and Barts Heart Centre, William Harvey Research Institute, Queen Mary University London, United Kingdom (M.J.B.)
  • 2 From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine-Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Czech Republic; and Barts Heart Centre, William Harvey Research Institute, Queen Mary University London, United Kingdom (M.J.B.). elena.azizan@ukm.edu.my
Hypertension, 2017 07;70(1):129-136.
PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057

Abstract

Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.