Affiliations 

  • 1 From the Clinical Pharmacology Unit, Department of Medicine (J.Z., L.H.S., C.A.B., C.M., A.E.D.T, E.A.B.A., M.J.B.), Cardiovascular Division, Department of Medicine (N.F.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Clinical Biochemistry, GenomicsCoreLab, Cambridge NIHR BRC, Department of Clinical Biochemistry (S.G.N., I.M.), and Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust (W.Z.), Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia (E.A.B.A.)
  • 2 From the Clinical Pharmacology Unit, Department of Medicine (J.Z., L.H.S., C.A.B., C.M., A.E.D.T, E.A.B.A., M.J.B.), Cardiovascular Division, Department of Medicine (N.F.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Clinical Biochemistry, GenomicsCoreLab, Cambridge NIHR BRC, Department of Clinical Biochemistry (S.G.N., I.M.), and Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust (W.Z.), Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia (E.A.B.A.). m.j.brown@cai.cam.ac.uk
Hypertension, 2015 May;65(5):1103-10.
PMID: 25776071 DOI: 10.1161/HYP.0000000000000025

Abstract

Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.