Displaying all 5 publications

Abstract:
Sort:
  1. Anis SN, Iqbal NM, Kumar S, Al-Ashraf A
    Bioengineered, 2013 Mar-Apr;4(2):115-8.
    PMID: 23018620 DOI: 10.4161/bioe.22350
    A simple procedure for recovering biodegradable polymer from bacterial cells has been developed using economical and environmentally friendly solvent or chemicals. Recombinant bacterium, Cupriavidus necator harboring pBBR1MCS-C2 plasmid polyhydroxyalkanoate (PHA) synthase gene was used for the production of copolymer P(3HB-co-3HHx) from crude palm kernel oil (CPKO). NaOH was chosen in this study as it could give high purity and recovery yield. Increase of NaOH concentration had resulted in an increase of the PHA purity, but the recovery yield had decreased. The greater improvement of PHA purity and recovery were achieved by incubating the freeze-dried cells (10-30 g/L) in NaOH (0.1 M) for 1-3 h at 30°C and polishing using 20% (v/v) of ethanol. The treatment caused negligible degradation of the molecular weight of PHA recovered from the bacterial cells. The present review also highlights other extraction methods to provide greater insights into economical and sustainable recovery of PHA from bacterial cells.
  2. Ramachandran H, Iqbal NM, Sipaut CS, Abdullah AA
    Appl Biochem Biotechnol, 2011 Jul;164(6):867-77.
    PMID: 21302147 DOI: 10.1007/s12010-011-9180-8
    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer was produced using Cupriavidus sp. USMAA2-4 via one-step cultivation process through combination of various carbon sources such as 1,4-butanediol or γ-butyrolactone with either 1-pentanol, valeric acid, or 1-propanol. Oleic acid was added to increase the biomass production. The composition of 3HV and 4HB monomers were greatly affected by the concentration of 1,4-butanediol and 1-pentanol. Terpolymers with 3HV and 4HB molar fractions ranging from 2 to 41 mol.% and 5 to 31 mol.%, respectively, were produced by varying the concentration of carbon precursors. The thermal and mechanical properties of the terpolymers containing different proportions of the constituent monomers were characterized using gel permeation chromatography (GPC), DSC, and tensile machine. GPC analysis showed that the molecular weights (M (w)) of the terpolymer produced were within the range of 346 to 1,710 kDa. The monomer compositions of 3HV and 4HB were also found to have great influences on the thermal and mechanical properties of the terpolymer P(3HB-co-3HV-co-4HB) produced.
  3. Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL
    Antonie Van Leeuwenhoek, 2021 Jul;114(7):1091-1106.
    PMID: 33895907 DOI: 10.1007/s10482-021-01580-0
    Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
  4. Zhang XL, Li GX, Ge YM, Iqbal NM, Yang X, Cui ZD, et al.
    Antonie Van Leeuwenhoek, 2021 Jun;114(6):845-857.
    PMID: 33770293 DOI: 10.1007/s10482-021-01563-1
    During the study into the microbial biodiversity and bioactivity of the Microcystis phycosphere, a new yellow-pigmented, non-motile, rod-shaped bacterium containing polyhydroxybutyrate granules designated as strain Z10-6T was isolated from highly-toxic Microcystis aeruginosa Kützing M.TN-2. The new isolate produces active bioflocculating exopolysaccharides. Phylogenetic analysis based on 16S rRNA gene sequences indicated strain Z10-6T belongs to the genus Sphingopyxis with highest similarity to Sphingopyxis solisilvae R366T (98.86%), and the similarity to other Sphingopyxis members was less than 98.65%. However, both low values obtained by phylogenomic calculation of average nucleotide identity (ANI, 85.5%) and digital DNA-DNA hybridization (dDDH, 29.8%) separated the new species from its closest relative. The main polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and one unidentified aminophospholipid. The predominant fatty acids were summed feature 8, C17:1ω6c, summed feature 3, C16:0, C18:1ω7c 11-methyl and C14:0 2-OH. The respiratory quinone was ubiqunone-10, with spermidine as the major polyamine. The genomic DNA G + C content was 64.8 mol%. Several biosynthesis pathways encoding for potential new bacterial bioactive metabolites were found in the genome of strain Z10-6T. The polyphasic analyses clearly distinguished strain Z10-6T from its closest phylogenetic neighbors. Thus, it represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis microcysteis sp. nov. is proposed. The type strain is Z10-6T (= CCTCC AB2017276T = KCTC 62492T).
  5. Yang X, Xiang R, Iqbal NM, Duan YH, Zhang XA, Wang L, et al.
    Curr Microbiol, 2021 Apr;78(4):1648-1655.
    PMID: 33651189 DOI: 10.1007/s00284-021-02431-x
    Phycosphere hosts the boundary of unique holobionts harboring dynamic algae-bacteria interactions. During our investigating the microbial consortia composition of phycosphere microbiota (PM) derived from diverse harmful algal blooms (HAB) dinoflagellates, a novel rod-shaped, motile and faint yellow-pigmented bacterium, designated as strain LZ-6 T, was isolated from HAB Alexandrium catenella LZT09 which produces high levels paralytic shellfish poisoning toxins. Phylogenetic analysis based on 16S rRNA gene and two housekeeping genes, rpoA and pheS sequences showed that the novel isolate shared the highest gene similarity with Marinobacter shengliensis CGMCC 1.12758 T (99.6%) with the similarity values of 99.6%, 99.9% and 98.5%, respectively. Further phylogenomic calculations of average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains LZ-6 T and the type strain of M. shengliensis were 95.9%, 96.4% and 68.5%, respectively. However, combined phenotypic and chemotaxonomic characterizations revealed that the new isolate was obviously different from the type strain of M. shengliensis. The obtained taxonomic evidences supported that strain LZ-6 T represents a novel subspecies of M. shengliensis, for which the name is proposed, Marinobacter shengliensis subsp. alexandrii subsp. nov. with the type strain LZ-6 T (= CCTCC AB 2018388TT = KCTC 72197 T). This proposal automatically creates Marinobacter shengliensis subsp. shengliensis for which the type strain is SL013A34A2T (= LMG 27740 T = CGMCC 1.12758 T).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links