Displaying all 6 publications

Abstract:
Sort:
  1. El-Ishaq A, Alshawsh MA, Chik ZB
    PeerJ, 2019;7:e7254.
    PMID: 31355056 DOI: 10.7717/peerj.7254
    Asparagus africanus Lam. is a plant used traditionally for natal care. This study evaluates the oestrogenic activities of aqueous root extract and screens for possible bioactive phytochemicals. Oestrogenicity of A. africanus was evaluated in ovariectomised rats treated with 50, 200, and 800 mg/kgBW doses twice daily for three days. Ethinyl estradiol (EE)1 mg/kg was used as positive control, and hormonal analysis and gene expression were carried out. The findings demonstrated that the extract produced a dose-dependent increase in the oestrogen levels with a significant increase compared to untreated rats. Pre-treatment with oestrogen receptor antagonist (ORA) prior to A. africanus treatment reversed the trend. Gene expression analysis on rats treated with 200 mg/kgBW A. africanus showed significant (p 
  2. El-Ishaq A, Alshawsh MA, Mun KS, Chik Z
    PeerJ, 2020;8:e9138.
    PMID: 32607276 DOI: 10.7717/peerj.9138
    Asparagus africanus Lam. is a plant used traditionally to treat different ailments. Currently, scanty information is available on its safety. The aim of this study is to determine the acute toxicity of the methanolic extract on vital organs and its associated biochemical parameters. Fifteen female Sprague-Dawley rats were divided into five groups. Group I served as normal control, groups II, III, IV, and V were orally administered single dose of crude extract dissolved in distilled water at 5 mg/kg BW, 50 mg/kg BW, 300 mg/kg BW and 2,000 mg/kg BW. Rats were observed for 14 days and body weights were recorded. On day 15, the rats were sacrificed and blood samples were collected for biochemical and haematological analyses, while the liver and kidneys were sampled for histopathological examination. Body weight and haematology parameters results showed significance difference (p 
  3. Ishaq A, Mohammad SJ, Bello AD, Wada SA, Adebayo A, Jagun ZT
    PMID: 37878175 DOI: 10.1007/s11356-023-30240-1
    Suboptimal management of healthcare waste poses a significant concern that can be effectively tackled by implementing Internet of Things (IoT) solutions to enhance trash monitoring and disposal processes. The potential utilisation of the Internet of Things (IoT) in addressing the requirements associated with biomedical waste management within the Kaduna area was examined. The study included a selection of ten hospitals, chosen based on the criterion of having access to wireless Internet connectivity. The issue of biomedical waste is significant within the healthcare sector since it accounts for a considerable amount of overall waste generation, with estimates ranging from 43.62 to 52.47% across various facilities. Utilisation of (IoT) sensors resulted in the activation of alarms and messages to facilitate the prompt collection of waste. Data collected from these sensors was subjected to analysis to discover patterns and enhance the overall efficiency of waste management practices. The study revealed a positive correlation between the quantity of hospital beds and the daily garbage generated. Notably, hospitals with a higher number of beds were observed to generate a much greater amount of waste per bed. Hazardous waste generated varies by hospital, with one hospital leading in sharps waste (10.98 kgd-1) and chemical waste (21.06 kgd-1). Other hospitals generate considerable amounts of radioactive waste (0.60 kgd-1 and 0.50 kgd-1), pharmaceuticals, and genotoxic waste (16.19 kgd-1), indicating the need for specialised waste management approaches. The study sheds light on the significance of IoT in efficient waste collection and the need for tailored management of hazardous waste.
  4. Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Houmsi MR, Jagun ZT
    PMID: 38151563 DOI: 10.1007/s11356-023-31472-x
    Microbial fuel cells (MFCs) have garnered attention in bio-electrochemical leachate treatment systems. The most common forms of inorganic ammonia nitrogen are ammonium ([Formula: see text]) and free ammonia. Anaerobic digestion can be inhibited in both direct (changes in environmental conditions, such as fluctuations in temperature or pH, can indirectly hinder microbial activity and the efficiency of the digestion process) and indirect (inadequate nutrient levels, or other conditions that indirectly compromise the microbial community's ability to carry out anaerobic digestion effectively) ways by both kinds. The performance of a double-chamber MFC system-composed of an anodic chamber, a cathode chamber with fixed biofilm carriers (carbon felt material), and a Nafion 117 exchange membrane is examined in this work to determine the impact of ammonium nitrogen ([Formula: see text]) inhibition. MFCs may hold up to 100 mL of fluid. Therefore, the bacteria involved were analysed using 16S rRNA. At room temperature, with a concentration of 800 mg L-1 of ammonium nitrogen and 13,225 mg L-1 of chemical oxygen demand (COD), the study produced a considerable power density of 234 mWm-3. It was found that [Formula: see text] concentrations above 800 mg L-1 have an inhibitory influence on power output and treatment effectiveness. Multiple routes removed the most nitrogen ([Formula: see text]-N: 87.11 ± 0.7%, NO2 -N: 93.17 ± 0.2% and TN: 75.24 ± 0.3%). Results from sequencing indicate that the anode is home to a rich microbial community, with anammox (6%), denitrifying (6.4%), and electrogenic bacteria (18.2%) making up the bulk of the population. Microbial fuel cells can efficiently and cost-effectively execute anammox, a green nitrogen removal process, in landfill leachate.
  5. Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Jagun ZT
    Environ Sci Pollut Res Int, 2023 Aug;30(36):86498-86519.
    PMID: 37454007 DOI: 10.1007/s11356-023-28580-z
    Untreated landfill leachate can harm the environment and human health due to its organic debris, heavy metals, and nitrogen molecules like ammonia. Microbial fuel cells (MFCs) have emerged as a promising technology for treating landfill leachate and generating energy. However, high concentrations of total ammonia-nitrogen (TAN), which includes both ammonia and the ammonium ion, can impede MFC performance. Therefore, maintaining an adequate TAN concentration is crucial, as both excess and insufficient levels can reduce power generation. To evaluate the worldwide research on MFCs using landfill leachate as a substrate, bibliometric analysis was conducted to assess publication output, author-country co-authorship, and author keyword co-occurrence. Scopus and Web of Science retrieved 98 journal articles on this topic during 2011-2022; 18 were specifically evaluated and analysed for MFC ammonia inhibition. The results showed that research on MFC using landfill leachate as a substrate began in 2011, and the number of related papers has consistently increased every 2 years, totaling 4060 references. China, India, and the USA accounted for approximately 60% of all global publications, while the remaining 40% was contributed by 70 other countries/territories. Chongqing University emerged as one of the top contributors among this subject's ten most productive universities. Most studies found that maintaining TAN concentrations in the 400-800 mg L-1 in MFC operation produced good power density, pollution elimination, and microbial acclimatization. However, the database has few articles on MFC and landfill leachate; MFC ammonia inhibition remains the main factor impacting system performance. This bibliographic analysis provides excellent references and future research directions, highlighting the current limitations of MFC research in this area.
  6. Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT
    Environ Sci Pollut Res Int, 2024 Jun;31(29):41683-41733.
    PMID: 38012494 DOI: 10.1007/s11356-023-30841-w
    Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links