Displaying all 2 publications

Abstract:
Sort:
  1. Wasano N, Takemura T, Ismil R, Bakar B, Fujii Y
    Nat Prod Commun, 2015 May;10(5):725-7.
    PMID: 26058144
    Goniothalamin produced by the Malaysian medicinal plant, Goniothalamus andersonii J. Sinclair, strongly inhibits plant growth. However, its mode of action has not been characterized at the gene expression level. We conducted DNA microarray assay to analyze the changes in early gene responses of Arabidopsis thaliana seedlings. After a 6-h exposure to goniothalamin, we observed an upregulation of genes highly associated with heat response, and 22 heat shock protein (AtHSP) genes were upregulated more than 50 fold. Together with these genes, we observed upregulation of the genes related to oxidative stress and protein folding. Also, the genes related to cell wall modification and cell growth, expansin (AtEXPA) genes, were significantly downregulated. The results suggested that goniothalamin induces oxidative stresses and inhibits the expression of cell wall-associated proteins resulting in growth inhibition of Arabidopsis seedlings.
  2. Takemura T, Kamo T, Ismil R, Bakar B, Wasano N, Hiradate S, et al.
    Nat Prod Commun, 2012 Sep;7(9):1197-8.
    PMID: 23074907
    A crude methanol extract of Goniothalamus andersonii J. Sinclair strongly inhibited elongation of lettuce (Lactuca sativa L.) radicles. We conducted bioassay-guided purification of G. andersonii bark extract and obtained goniothalamin as the major bioactive compound. Its EC50 values against elongation of lettuce radicles and hypocotyls were 50 and 125 micromol L(-1), respectively. Among the six species tested, timothy was the most sensitive to goniothalamin. Quantification of this compound in other Goniothalamus species suggested that the plant inhibitory activity of this genus is explainable by goniothalamin, with G. calcareus as an exception.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links