Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Hashim SE, Sirat HM, Yen KH, Ismail IS, Matsuki SN
    Nat Prod Commun, 2015 Sep;10(9):1561-3.
    PMID: 26594759
    Seven compounds were isolated from the n-hexane and chloroform extracts of the flowers and leaves of four Hornstedtia species and their structures were identified using spectroscopic techniques as 3,7,4'-trimethylkaempferol (1), 3,7-dimethylkaempferol (2), 7,4'-dimethylkaempferol (3), 3,5-dimethylkaempferol (4), 3-methylkaempferol (5), stigmast-4-en-3-one (6), and 6-hydroxy-stigmast-4-en-3-one (7). Compounds 1 to 7 were isolated from these species for the first time. They were assayed for free radical scavenging and α-glucosidase inhibition activities. The DPPH assay showed that 3-methylkaempferol (5) was the most potent antioxidant agent with an IC50 value 78.6 µM, followed by 7,4'-dimethylkaempferol (3) (IC50 = 86.1 µM). For α-glucosidase inhibition activity, 3-methylkaempferol (5) exhibited significant inhibitory activity with an IC50 value 21.0 µM. The present study revealed that Hornstedtia species have potential activities as antioxidant and α-glucosidase inhibitors.
  2. Wan Salleh WM, Ahmad F, Yen KH
    Nat Prod Commun, 2014 Dec;9(12):1795-8.
    PMID: 25632488
    The study was designed to examine the chemical composition and antimicrobial activities of essential oils extracted from the aerial parts of three Piper species: Piper abbreviatum, P. erecticaule and P. lanatum, all from Malaysia. GC and GC/MS analysis showed qualitative and quantitative differences between these oils. GC and GC-MS analysis of P. abbreviatum, P. erecticaule and P. lanatum oils resulted in the identification of 33, 35 and 39 components, representing 70.5%, 63.4% and 78.2% of the components, respectively. The major components of P. abbreviatum oil were spathulenol (11.2%), (E)-nerolidol (8.5%) and β-caryophyllene (7.8%), whereas P. erecticaule oil mainly contained β-caryophyllene (5.7%) and spathulenol (5.1%). Borneol (7.5%), β-caryophyllene (6.6%) and α-amorphene (5.6%) were the most abundant components in P. lanatum oil. Antimicrobial activity was carried out using disc diffusion and broth micro-dilution method against nine microorganisms. All of the essential oils displayed weak activity towards Gram-positive bacteria with MIC values in the range 250-500 μg/mL. P. erecticaule oil showed the best activity on Aspergillus niger (MIC 31.3 μg/mL), followed by P. lanatum oil (MIC 62.5 μg/mL). This study demonstrated that the essential oils have potential as antimicrobial agents and may be useful in the pharmaceutical and cosmetics industries.
  3. Namvar F, Tahir PM, Mohamad R, Mahdavi M, Abedi P, Najafi TF, et al.
    Nat Prod Commun, 2013 Dec;8(12):1811-20.
    PMID: 24555303
    This review article summarizes in vitro and in vivo experiments on seaweed anticancer activity and seaweed chemical components. Seaweed use in cancer therapy, chemopreventive randomized control trials (RCTs) and quasi-experiments are discussed. The literature reviewed in this article was obtained from various scientific sources and encompasses publications from 2000-2012. Seaweed therapeutic effects were deemed scientifically plausible and may be partially explained by the in vivo and in vitro pharmacological studies described. Although the mechanisms of action remain unclear, seaweed's anticancer properties may be attributable to its major biologically active metabolites. Much of the seaweed research outlined in this paper can serve as a foundation for explaining seaweed anticancer bioactivity. This review will open doors for developing strategies to treat malignancies using seaweed natural products.
  4. Chua LS, Yap KC, Jaganath IB
    Nat Prod Commun, 2013 Dec;8(12):1725-9.
    PMID: 24555283
    The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.
  5. Phan CW, Lee GS, Macreadie IG, Malek SN, Pamela D, Sabaratnam V
    Nat Prod Commun, 2013 Dec;8(12):1763-5.
    PMID: 24555294
    Different solvent extracts of Pleurotus giganteus fruiting bodies were tested for antifungal activities against Candida species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the Candida species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytotoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of Pleurotus giganteus against Candida species.
  6. Vongsak B, Gritsanapan W, Wongkrajang Y, Jantan I
    Nat Prod Commun, 2013 Nov;8(11):1559-61.
    PMID: 24427941
    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.
  7. Prakash I, Chaturvedula VS, Markosyan A
    Nat Prod Commun, 2013 Nov;8(11):1523-6.
    PMID: 24427932
    From the extract of the leaves of Stevia rebaudiana Bertoni, a diterpene glycoside was isolated which was identified as 13-[(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-D-glucopyranosyl) ester (1). The complete 1H and 13C NMR assignment of 1 is reported for the first time, from extensive NMR (1H and 13C, COSY, HSQC, and HMBC) and mass spectral data. Also, we report the sensory evaluation of 1 against sucrose for the sweetness property of this molecule.
  8. Muhammad A, Sirat HM
    Nat Prod Commun, 2013 Oct;8(10):1435-7.
    PMID: 24354195
    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
  9. Jusoh S, Sirat HM, Ahmad F
    Nat Prod Commun, 2013 Sep;8(9):1317-20.
    PMID: 24273875
    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.
  10. Ming LJ, Yin AC
    Nat Prod Commun, 2013 Mar;8(3):415-8.
    PMID: 23678825
    Glycyrrhizic acid (GA), belonging to a class of triterpenes, is a conjugate of two molecules, namely glucuronic acid and glycyrrhetinic acid. It is naturally extracted from the roots of licorice plants. With its more common uses in the confectionery and cosmetics industry, GA extends its applications as a herbal medicine for a wide range of ailments. At low appropriate doses, anti-inflammatory, anti-diabetic, antioxidant, anti-tumor, antimicrobial and anti-viral properties have been reported by researchers worldwide. This review summarizes the effects of GA on metabolic syndrome, tumorigenesis, microbes and viruses, oxidative stress, and inflammation, as well as the reported side effects of the drug.
  11. Din WM, Chu J, Clarke G, Jin KT, Bradshaw TD, Fry JR, et al.
    Nat Prod Commun, 2013 Mar;8(3):375-80.
    PMID: 23678815
    In the annals of biomedical theory perhaps no single class of natural product has enjoyed more ingenious speculation than antioxidants formally aimed at counteracting oxidative insults which are involved in the pathophysiology of Alzheimer's and Parkinson's disease, cancer, amyotrophic lateral sclerosis, skin ageing and wound healing. In pursuing our study of Malaysian traditional medicines with antioxidant properties, we became interested in Acalypha wilkesiana var. macafeana hort., used traditionally to heal wounds. To examine whether Acalypha wilkesiana var. macafeana hort. could suppress oxidation an ethanol extract was tested by conventional chemical in vitro assays i.e., ferric reducing antioxidant potential assay (FRAP), DPPH scavenging assay and beta-carotene bleaching (BCB) assay. To explore whether Acalypha wilkesiana var. macafeana hort. protected cells against oxidative injuries, we exposed human hepatocellular liver carcinoma (HepG2) cells to tert-butylhydroperoxide (t-BHP). In all the aforementioned experiments, the ethanol extracts elicited potent antioxidant and cytoprotective activities. To gain a better understanding of the phytochemical nature of the antioxidant principle involved, five fractions (F1-F5) obtained from the ethanol extract were tested using FRAP, DPPH and BCB assays. Our results provided evidence that F5 was the most active fraction with antioxidant potentials equal to 2.090 +/- 0.307 microg/mL, 0.532 +/- 0.041 microg/mL, 0.032 +/- 0.025 microg/mL in FRAP, DPPH and BCB assay, respectively. Interestingly, F5 protected HepG2 against t-BHP oxidative insults. To further define the chemical identity of the antioxidant principle, we first performed a series of phytochemical tests, followed by liquid-chromatography and mass spectrometry (LC/MS) profiling which showed that the major compound contained in F5 was geraniin. To the best of our knowledge, this is the first report showing that the wound healing property of Acalypha wilkesiana var. macafeana hort. is mediated by a geraniin containing extract. Furthermore, our data leads us to conclude that geraniin could be used as a potential pharmaceutical and/or cosmetic topical agent.
  12. Kamada T, Vairappan CS
    Nat Prod Commun, 2013 Mar;8(3):287-8.
    PMID: 23678792
    A Bomean red algal population of Laurencia similis Nam et Saito was analyzed for its secondary metabolite composition. Seven compounds were identified: ent-1(10)-aristolen-9beta-ol (1), (+)-aristolone (2), axinysone B (3), 9-aristolen-1alpha-ol (4), 2,3,5,6-tetrabromoindole (5), 1-methyl-2,3,5,6-tetrabromoindole (6), and 1-methyl-2,3,5-tribromoindole (7). Compound 1 was identified as a new optical isomer of 1(10)-aristolen-9beta-ol. Compounds 1, 4 and 5 exhibited good antibacterial activity against antibiotic resistant clinical bacteria and cytotoxic effects against selected cancer cell lines.
  13. Ibrahim D, Hong LS, Kuppan N
    Nat Prod Commun, 2013 Apr;8(4):493-6.
    PMID: 23738462
    The antibacterial efficiency of the methanolic extract of Phyllanthus niruri Linn. was investigated against pathogenic bacteria responsible for common infections of skin, and urinary and gastrointestinal tracts. The extract demonstrated antibacterial activities against all the Gram-positive and Gram-negative bacteria tested. The results obtained suggested that at higher concentrations the extract would eradicate the growth of bacterial cells. The bacterial cells, after exposure to the extract, showed complete alteration in their morphology, followed by collapse of the cells beyond repair. The study revealed that the methanolic extract of P. niruri may be an effective antibacterial agent to treat bacterial infections since the extract exhibited significant antimicrobial potency, comparable with that of the standard antibiotic chloramphenicol.
  14. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
  15. Jani NA, Sirat MH, Ali NM, Aziz A
    Nat Prod Commun, 2013 Apr;8(4):513-4.
    PMID: 23738467
    The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia,are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).
  16. Yue TH, Hock AH, Kiang LC, Mooi LY
    Nat Prod Commun, 2012 Jun;7(6):775-8.
    PMID: 22816305
    Phytochemical studies of the leaves and rhizomes of Paraboea pa niculata (Gesneriaceae) are reported for the first time. Three phenylethanoid glycosides were isolated and characterized as 3,4-dihydroxyphenethyl-(3"-O-beta-D-apiofuranosyl)-beta-D-glucopyranoside, calceoralarioside E, and acteoside. These isolates exhibited weak cytotoxic activity against the K-562 cell line with a 50% of cell killing rate of 40.18 microM, 27.05 microM, and 27.24 microM, respectively. In the DPPH free radical scavenging assay, their IC50 values were determined as 75.89 microM, 25.00 microM, and 26.04 microM, respectively.
  17. Tan SJ, Subramaniam G, Thomas NF, Kam TS
    Nat Prod Commun, 2012 Jun;7(6):739-42.
    PMID: 22816296
    Five new nitrogenous compounds were isolated from the Malayan Alstonia angustifolia and their structures determined based on interpretation of spectroscopic data.
  18. Hussin N, Mondello L, Costa R, Dugo P, Yusoff NI, Yarmo MA, et al.
    Nat Prod Commun, 2012 Jul;7(7):927-30.
    PMID: 22908584
    Patchouli essential oil can be obtained from fresh, dried and fermented plant material. It is a highly valuable product in the fragrance industry and its quality changes depending upon raw material age and oil storage. In this work, patchouli essential oils derived from different treatments have been subjected to GC-FID quantitative analysis using an internal standard (ISTD) method with response factors (RF). Samples were obtained from i) fresh plants; ii) hydrodistillation of one year mature and fermented plants; iii) hydrodistillation of one year mature plants; iv) commercial products from Indonesia and Malaysia. Linear Retention Indices (LRI) for both polar and non-polar GC-MS analyses were also measured as a tool for qualitative analysis towards a homologous series of C7-C30 n-alkanes. The results obtained confirmed that, in all samples, patchouli alcohol was the main volatile constituent, with higher amount in lab-scale produced oils, compared with commercial samples. Other major compounds, in lab oils and commercial samples respectively, were: delta-guaiene, alpha-guaiene, pogostol, seychellene and alpha-patchoulene. Another 36 compounds were also found.
  19. Vairappan CS, Nagappan T, Palaniveloo K
    Nat Prod Commun, 2012 Feb;7(2):239-42.
    PMID: 22474969
    Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
  20. Har LW, Shaari K, Boon LH, Kamarulzaman FA, Ismail IS
    Nat Prod Commun, 2012 Aug;7(8):1033-6.
    PMID: 22978223
    Two new phloroglucinol derivatives, identified as anthuminoate (1) and anthuminone (2), were isolated from the ichthyotoxic ethyl acetate fraction of Syzygium polyanthum leaves. In addition, bioassay-guided fractionation followed by dereplication of the photocytotoxic fraction of this plant part has resulted in the identification of five known pheophorbides as the bioactive constituents. The compounds were identified as pheophorbide-a, methyl pheophorbide-a, methyl hydroxypheophorbide-a, pheophorbide-b and hydroxypheophorbide-b. Inhibition of cell viability shown by the compounds ranged from 83.3 to 86.1% at a test concentration of 5 microg/mL. This shows that Syzygium polyanthum leaves are a potential new source in the studies of photocytotoxicity for photodynamic therapy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links