The textile industries need an alternative to cotton since its supply is unable to keep up with the growing global demand. The ramie (Boehmeria nivea (L.) Gaudich) fiber has a lot of potential as a renewable raw material but has low fire-resistance, which should be improved. In this work, the objectives were to investigate the characteristics of lignin derived from black liquor of kraft pulping, as well as the properties of the developed lignin-based non-isocyanate-polyurethane (L-NIPU), and to analyze ramie fiber before and after impregnation with L-NIPU. Two different formulations of L-NIPU were impregnated into ramie fiber for 30, 60, and 90 min at 25 × 2 °C under 50 kPa. The calculation of the Weight Percent Gain (WPG), Fourier Transform Infrared Spectrometer (FTIR), Rotational Rheometer, Dynamic Mechanical Analyzer (DMA), Pyrolysis Gas Chromatography Mass Spectrometer (Py-GCMS), Universal Testing Machine (UTM), and hydrolysis test were used to evaluate the properties of ramie fibers. The result showed that ramie fiber impregnated with L-NIPU produced higher mechanical property values and WPG than non-impregnated ramie fiber. There is a tendency that the longer impregnation time results in better WPG values, FTIR intensity of the urethane group, thermomechanical properties, crystallinity, and mechanical properties of ramie fiber. However, the use of DMC and HMT cannot replace the role of isocyanates in the synthesis of L-NIPU because it produces lower heat resistance than ramie impregnated using pMDI. Based on the results obtained, the impregnation of ramie fiber with L-NIPU represents a promising approach to increase its wider industrial application as a functional material.
Asian countries have abundant resources of natural fibers, but unfortunately, they have not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization and improve the economic potential as well as the sustainability of natural fibers, a comprehensive review is required. The study aimed to demonstrate the availability, technological processing, and socio-economical aspects of natural fibers. Although many studies have been conducted on this material, it is necessary to revisit their potential from those perspectives to maximize their use. The renewability and biodegradability of natural fiber are part of the fascinating properties that lead to their prospective use in automotive, aerospace industries, structural and building constructions, bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of applications, relevant technologies in conjunction with social approaches are very important. Hence, in the future, the utilization can be expanded in many fields by considering the basic characteristics and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for creating national products can be assisted by providing an integrated management system from a digitalized information on potential and related technological approaches. To make it happens, collaborations between stakeholders from the national R&D agency, the government as policy maker, and academic institutions to develop national bioproducts based on domestic innovation in order to move the circular economy forward are essential.
Each year, 50 to 70 million tonnes of lignin are produced worldwide as by-products from pulp industries and biorefineries through numerous processes. Nevertheless, about 98% of lignin is directly burnt to produce steam to generate energy for the pulp mills and only a handful of isolated lignin is used as a raw material for the chemical conversion and for the preparation of various substances as well as modification of lignin into nanomaterials. Thus, thanks to its complex structure, the conversion of lignin to nanolignin, attracting growing attention and generating considerable interest in the scientific community. The objective of this review is to provide a complete understanding and knowledge of the synthesis methods and functionalization of various lignin nanoparticles (LNP). The characterization of LNP such as structural, thermal, molecular weight properties together with macromolecule and quantification assessments are also reviewed. In particular, emerging applications in different areas such as UV barriers, antimicrobials, drug administration, agriculture, anticorrosives, the environment, wood protection, enzymatic immobilization and others were highlighted. In addition, future perspectives and challenges related to the development of LNP are discussed.
The rising environmental concerns and the growing demand for renewable materials have surged across various industries. In this context, lignin, being a plentiful natural aromatic compound that possesses advantageous functional groups suitable for utilization in biocomposite systems, has gained notable attention as a promising and sustainable alternative to fossil-derived materials. It can be obtained from lignocellulosic biomass through extraction via various techniques, which may cause variability in its thermal, mechanical, and physical properties. Due to its excellent biocompatibility, eco-friendliness, and low toxicity, lignin has been extensively researched for the development of high-value materials including lignin-based biocomposites. Its aromatic properties also allow it to successfully substitute phenol in the production of phenolic resin adhesives, resulting in decreased formaldehyde emission. This review investigated and evaluated the role of lignin as a green filler in lignin-based lignocellulosic composites, aimed at enhancing their fire retardancy and decreasing formaldehyde emission. In addition, relevant composite properties, such as thermal properties, were investigated in this study. Markedly, technical challenges, including compatibility with other matrix polymers that are influenced by limited reactivity, remain. Some impurities in lignin and various sources of lignin also affect the performance of composites. While lignin utilization can address certain environmental issues, its large-scale use is limited by both process costs and market factors. Therefore, the exact mechanism by which lignin enhances flame retardancy, reduces formaldehyde emissions, and improves the long-term durability of lignocellulosic composites under various environmental conditions remains unclear and requires thorough investigation. Life cycle analysis and techno-economic analysis of lignin-based composites may contribute to understanding the overall influence of systems not only at the laboratory scale but also at a larger industrial scale.