Displaying all 5 publications

Abstract:
Sort:
  1. Jønsson KA, Fjeldså J, Ericson PG, Irestedt M
    Biol Lett, 2007 Jun 22;3(3):323-6.
    PMID: 17347105
    Biogeographic connections between Australia and other continents are still poorly understood although the plate tectonics of the Indo-Pacific region is now well described. Eupetes macrocerus is an enigmatic taxon distributed in a small area on the Malay Peninsula and on Sumatra and Borneo. It has generally been associated with Ptilorrhoa in New Guinea on the other side of Wallace's Line, but a relationship with the West African Picathartes has also been suggested. Using three nuclear markers, we demonstrate that Eupetes is the sister taxon of the South African genus Chaetops, and their sister taxon in turn being Picathartes, with a divergence in the Eocene. Thus, this clade is distributed in remote corners of Africa and Asia, which makes the biogeographic history of these birds very intriguing. The most parsimonious explanation would be that they represent a relictual basal group in the Passerida clade established after a long-distance dispersal from the Australo-Papuan region to Africa. Many earlier taxonomic arrangements may have been based on assumptions about relationships with similar-looking forms in the same, or adjacent, biogeographic regions, and revisions with molecular data may uncover such cases of neglect of ancient relictual patterns reflecting past connections between the continents.
  2. Reeve AH, Gower G, Pujolar JM, Smith BT, Petersen B, Olsson U, et al.
    Evol Lett, 2023 Feb 01;7(1):24-36.
    PMID: 37065434 DOI: 10.1093/evlett/qrac006
    Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.
  3. Reeve AH, Kennedy JD, Pujolar JM, Petersen B, Blom MPK, Alström P, et al.
    Nat Commun, 2023 Dec 11;14(1):8215.
    PMID: 38081809 DOI: 10.1038/s41467-023-43964-y
    The processes generating the earth's montane biodiversity remain a matter of debate. Two contrasting hypotheses have been advanced to explain how montane populations form: via direct colonization from other mountains, or, alternatively, via upslope range shifts from adjacent lowland areas. We seek to reconcile these apparently conflicting hypotheses by asking whether a species' ancestral geographic origin determines its mode of mountain colonization. Island-dwelling passerine birds at the faunal crossroads between Eurasia and Australo-Papua provide an ideal study system. We recover the phylogenetic relationships of the region's montane species and reconstruct their ancestral geographic ranges, elevational ranges, and migratory behavior. We also perform genomic population studies of three super-dispersive montane species/clades with broad island distributions. Eurasian-origin species populated archipelagos via direct colonization between mountains. This mode of colonization appears related to ancestral adaptations to cold and seasonal climates, specifically short-distance migration. Australo-Papuan-origin mountain populations, by contrast, evolved from lowland ancestors, and highland distribution mostly precludes their further colonization of island mountains. Our study explains much of the distributional variation within a complex biological system, and provides a synthesis of two seemingly discordant hypotheses for montane community formation.
  4. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2021 Apr;592(7856):E24.
    PMID: 33833441 DOI: 10.1038/s41586-021-03473-8
  5. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2020 Nov;587(7833):252-257.
    PMID: 33177665 DOI: 10.1038/s41586-020-2873-9
    Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links