Displaying all 3 publications

Abstract:
Sort:
  1. Mohd-Radzman NH, Wan Ismail WI, Jaapar SS, Adam Z, Adam A
    PMID: 27594889 DOI: 10.1155/2016/2467420
    [This corrects the article DOI: 10.1155/2013/938081.].
  2. Mohd-Radzman NH, Ismail WI, Jaapar SS, Adam Z, Adam A
    PMID: 24391675 DOI: 10.1155/2013/938081
    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.
  3. Mohd-Radzman NH, Ismail WI, Adam Z, Jaapar SS, Adam A
    PMID: 24324517 DOI: 10.1155/2013/718049
    Insulin resistance is a key factor in metabolic disorders like hyperglycemia and hyperinsulinemia, which are promoted by obesity and may later lead to Type II diabetes mellitus. In recent years, researchers have identified links between insulin resistance and many noncommunicable illnesses other than diabetes. Hence, studying insulin resistance is of particular importance in unravelling the pathways employed by such diseases. In this review, mechanisms involving free fatty acids, adipocytokines such as TNF α and PPAR γ and serine kinases like JNK and IKK β , asserted to be responsible in the development of insulin resistance, will be discussed. Suggested mechanisms for actions in normal and disrupted states were also visualised in several manually constructed diagrams to capture an overall view of the insulin-signalling pathway and its related components. The underlying constituents of medicinal significance found in the Stevia rebaudiana Bertoni plant (among other plants that potentiate antihyperglycemic activities) were explored in further depth. Understanding these factors and their mechanisms may be essential for comprehending the progression of insulin resistance towards the development of diabetes mellitus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links