The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.
Programmable Object Interfaces are increasingly intriguing researchers because of their broader applications, especially in the medical field. In a Wireless Body Area Network (WBAN), for example, patients' health can be monitored using clinical nano sensors. Exchanging such sensitive data requires a high level of security and protection against attacks. To that end, the literature is rich with security schemes that include the advanced encryption standard, secure hashing algorithm, and digital signatures that aim to secure the data exchange. However, such schemes elevate the time complexity, rendering the data transmission slower. Cognitive radio technology with a medical body area network system involves communication links between WBAN gateways, server and nano sensors, which renders the entire system vulnerable to security attacks. In this paper, a novel DNA-based encryption technique is proposed to secure medical data sharing between sensing devices and central repositories. It has less computational time throughout authentication, encryption, and decryption. Our analysis of experimental attack scenarios shows that our technique is better than its counterparts.