Displaying all 2 publications

Abstract:
Sort:
  1. Alkhawaldeh AAK, Jaber JJ, Boughaci D, Ismail N
    PLoS One, 2021;16(5):e0250242.
    PMID: 33945537 DOI: 10.1371/journal.pone.0250242
    Corporate governance is the way of governing a firm in order to increase its accountability and to avoid any massive damage before it occurs. The aim of this paper is to investigate the impact of capital structure, firms' size, and competitive advantages of firms as control variables on credit ratings. We investigate the role of corporate governance in improving the firms' credit rating using a sample of Jordanian listed firms. We split firms into four categories according to WVB credit rating. We use both the binary logistic regression (LR) and the ordinal logistic regression (OLR) to model credit ratings in Jordanian environment. The empirical results show that the control variables are strong determinants of credit ratings. When we evaluate the relationship between the governance variables and credit ratings, we found interesting results. The board stockholders and board expertise are moderately significant. The board independence and role duality are weakly significant, while board size is insignificant.
  2. Alenezy AH, Ismail MT, Jaber JJ, Wadi SA, Alkhawaldeh RS
    PLoS One, 2022;17(12):e0278835.
    PMID: 36490280 DOI: 10.1371/journal.pone.0278835
    This research employs the gradient descent learning (FIR.DM) approach as a learning process in a nonlinear spectral model of maximum overlapping discrete wavelet transform (MODWT) to improve volatility prediction of daily stock market prices using Saudi Arabia's stock exchange (Tadawul) data. The MODWT comprises five mathematical functions and fuzzy inference rules. The inputs are the oil price (Loil) and repo rate (Repo) according to multiple regression correlation, and the Engle and Granger Causality test Engle RF, (1987). The logarithm of the stock market price (LSCS) in Tadawul reflects the output variable. The correlation matrix reveals that there is no collinearity between the input variables, and the causality test demonstrates that the input variables significantly influence the outcome variable. According to the multiple regression, there is a substantial negative influence between Loil and LSCS but a significant positive effect between Repo and output. For the 80% dataset under ME (0.000005), MAE (0.003214), and MAPE (0.064497), the MODWT-LA8 (ARIMA(1,1,0) with drift) for the LSCS variable performs better than other WT functions. In the novel hybrid model MODWT-FIR.DM, each function's approximation coefficient (LSCS) is applied with input variables (Loil and Repo). We evaluate the performance of the proposed model (MODWT-LA8-FIR.DM) using different statistical measures (ME, RMSE, MAE, MPE) and compare it to two established models: the original FIR.DM and other MODWT-FIR.DM functions for forecasting 20% of datasets. The outcomes show that the MODWT-LA8-FIR.DM performs better than the traditional models based on lower ME (3.167586), RMSE (3.167638), MAE (3.167586), and MPE (80.860849). The proposed hybrid model may be a potential stock market forecasting model.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links